
The Journal of Systems and Software 127 (2017) 52–77

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A mapping study on design-time quality attributes and metrics

Elvira Maria Arvanitou

a , Apostolos Ampatzoglou

a , ∗, Alexander Chatzigeorgiou

b ,
Matthias Galster c , Paris Avgeriou

a

a Department of Mathematics and Computer Science, University of Groningen, The Netherlands
b Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
c Department of Computer Science and Software Engineering, University of Canterbury, Christchurch, New Zealand

a r t i c l e i n f o

Article history:

Received 28 April 2016

Revised 20 December 2016

Accepted 25 January 2017

Available online 27 January 2017

Keywords:

Software quality

Measurement

Design-time quality attributes

Mapping study

a b s t r a c t

Developing a plan for monitoring software quality is a non-trivial task, in the sense that it requires: (a)

the selection of relevant quality attributes, based on application domain and development phase, and (b)

the selection of appropriate metrics to quantify quality attributes. The metrics selection process is further

complicated due to the availability of various metrics for each quality attribute, and the constraints that

impact metric selection (e.g., development phase, metric validity, and available tools). In this paper, we

shed light on the state-of-research of design-time quality attributes by conducting a mapping study. We

have identified 154 papers that have been included as primary studies. The study led to the following

outcomes: (a) low-level quality attributes (e.g., cohesion, coupling, etc.) are more frequently studied than

high-level ones (e.g., maintainability, reusability, etc.), (b) maintainability is the most frequently examined

high-level quality attribute, regardless of the application domain or the development phase, (c) assess-

ment of quality attributes is usually performed by a single metric, rather than a combination of multiple

metrics, and (d) metrics are mostly validated in an empirical setting. These outcomes are interpreted and

discussed based on related work, offering useful implications to both researchers and practitioners.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Software quality is an ambiguous term, in the sense that: (a)

from the viewpoint of the user, quality is about how software

meets its purpose, (b) from the developers’ point of view, qual-

ity is about the conformance of software to its specifications, (c)

from the product view, quality deals with the structural character-

istics of the software, and (d) from a monetary viewpoint, quality

is about the amount of money that a client is willing to pay to ob-

tain it (Kitchenham and Pfleeger, 1996). Additionally, quality assur-

ance cannot be performed in the same way across different soft-

ware projects. Instead, assuring the levels of quality for a specific

project requires answering the following questions, as outlined in

Fig. 1 :

• What quality attributes should be monitored ? One of the first

activities in software development is the selection of quality

attributes (QAs) that are the most important for the specific

project (usually termed as forces or architecture key-drivers)

(Bass et al., 2003). Quality attributes are project-specific since
∗ Corresponding author.

E-mail addresses: e.m.arvanitou@rug.nl (E.M. Arvanitou), a.ampatzoglou@rug.nl ,

apostolos.ampatzoglou@gmail.com (A. Ampatzoglou), achat@uom.gr (A. Chatzigeor-

giou), mgalster@ieee.org (M. Galster), paris@cs.rug.nl (P. Avgeriou).

http://dx.doi.org/10.1016/j.jss.2017.01.026

0164-1212/© 2017 Elsevier Inc. All rights reserved.
different software applications have different priorities, con-

cerns and constraints. Nevertheless, we anticipate that projects

belonging to the same application domain are presenting a sim-

ilar prioritization for their key-drivers (Eckhardt et al., 2017).

For example, critical-embedded systems put special emphasis

on run-time quality attributes (e.g., performance, energy effi-

ciency, etc.), whereas applications with intense interaction with

the users (e.g., enterprise applications), focus on design-time

ones (e.g., maintainability, extendibility, etc.). However, moni-

toring quality attributes cannot be performed in the same way

in all phases of software development, in the sense that differ-

ent phases focus on different quality aspects of the software.

For example, during the requirements phase the engineers are

expected to be less focused to code-level quality aspects (e.g.,

cohesion, coupling, etc.), whereas during the testing phase the

engineers are more probably concerned about the correctness

and completeness of the implementation. Therefore, quality at-

tributes should not only be prioritized by application domain,

but by development phase, as well.
• How can these quality attributes be monitored? Af-

ter selecting the quality attributes of interest for every

type of product development phase, the next step is the

development of a measurement plan to monitor the levels

of the specific quality attributes, given the constraints of the

http://dx.doi.org/10.1016/j.jss.2017.01.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.01.026&domain=pdf
mailto:e.m.arvanitou@rug.nl
mailto:a.ampatzoglou@rug.nl
mailto:apostolos.ampatzoglou@gmail.com
mailto:achat@uom.gr
mailto:mgalster@ieee.org
mailto:paris@cs.rug.nl
http://dx.doi.org/10.1016/j.jss.2017.01.026

E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77 53

Fig. 1. Motivation of the study.

t

q

d

p

o

t

a

c

d

w

a

l

K

l

v

g

s

d

q

o
specific phase (e.g., available artifacts) (ISO/IEC 25023, 2003).

However, there are no widely accepted sets of metrics for

assessing a quality attribute across all development phases,

since: (a) there is no set of metrics that is appropriate for all

phases, and (b) quality attributes are not always associated

with metrics. The usefulness of metrics that are accurately

mapped to quality attributes has been extensively discussed

by Harrison et al. (1998) . However, only lately there have been

effort s to develop a quality model where quality attributes

are associated with measurable elements. For example, ISO/IEC

25023 (2003) provides measures for the characteristics in

the product quality model. An additional information that is

needed for the selection of specific metrics is their validity as

assessors of the targeted quality attribute, and the availability

of tools that can automate their calculation.

The goal of this study is to provide the necessary guidance

o researchers and practitioners for answering the aforementioned

uestions. In this paper, we summarize the state-of-research on

esign-time quality attributes and metrics by conducting a map-

ing study. Therefore, the goal of this paper is to conduct a fair

verview of “good quality” studies 1 on design-time quality at-

ributes and related quality metrics. In particular, we identify and

nalyse research on quality in software engineering, without fo-

using on any programming paradigm / language, any application

omain (e.g., telecommunication, embedded systems), or any soft-

are engineering phase (e.g., requirements engineering, software

rchitecture, etc.). Thus, the outcome of this study provides the fol-

owing contributions:

[c1] Highlight the most important design-time quality at-

tributes in different application domains and development

phases. This overview contributes a comprehensive list of

design-time quality attributes that have been identified in

different application domains, and which are of paramount

importance in each development phase. Based on this, re-

searchers can spot: (a) the most important design time qual-

ity attributes for each domain and development phase, and
1 The term “good quality” studies is used in this paper, as introduced by

itchenham et al. (2009a) . Based on their study “poor quality studies” are more

ikely to be identified in broad searches that are not targeting specific, established

enues.

t

e

(

c

c
propose domain- or phase-specific approaches that tackle

them, and (b) the aspects of quality in a specific applica-

tion domains or development phases that have not been

studied in detail and therefore might require more atten-

tion. Practitioners can use this comprehensive list of design

time quality attributes as a checklist to find potential qual-

ity attributes for their particular project in every phase of

development, based on the application domain in which the

project belongs. Based on the outcome of this contribution,

practitioners will be able to perform the process for quality

attribute selection.

[c2] A mapping of design-time quality attributes and metrics .

Software metrics are used to quantify quality attributes.

Thus, our study compiles a catalogue of metrics related to

design-time quality attributes. In particular, we study five

perspectives of this relation:

(a) we identify if a quality attribute is quantified through a

formula that is based on aggregating other metrics, or is

assessed through a set of metrics that cannot be aggre-

gated (i.e., the quality attribute would be measured by

individual metrics),

(b) we map quality attributes to the metrics that can be used

for their quantification,

(c) we present the validation on the relationship between

metrics and quality attributes and the provided level of

evidence,

(c) we discuss the development phase in which different

metrics can be calculated, and

(d) we provide a list of tools that can be used for automati-

cally calculating the metric scores for a specific system.

By exploiting these five perspecti ves, practitioners can be

uided in their metric selection and application processes. More

pecifically, after a practitioner picks a quality attribute for each

evelopment phase (based on c1), he/she: (i) inspects how the

uality attribute can be quantified (through a formula or a set

f metrics), (ii) after checking the available metrics for its quan-

ification in the current phase, and considering their validity lev-

ls, he/she can select the set of metrics that will be used, and

iii) based on the selected metrics, he/she will decide which tools

an be reused or developed from scratch. Similarly, researchers can

heck which quality attributes are well-supported by metrics and

54 E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77

Fig. 2. Comparison to related work.

w

t

m

d

S

c

2

a

q

g

t

t

R

o

t

t

c

c

p

s

m

r

2

n

m

w

b

t

e
which quality attributes might require novel metrics. Additionally,

based on metric validity assessment, researchers can identify qual-

ity attributes whose quantification requires further evaluation.

In this mapping study, we are interested only in “good quality”

studies, in order to provide researchers and practitioners with an

analysis of thoroughly conducted, validated and reliable research

effort s (f or further justification on the selection of “good quality”

studies, see Section 3.2). Therefore, we aimed at identifying stud-

ies published only in particular “good quality” venues (more details

on venue selection are presented in Section 3.2). Additionally, we

focus on studies that introduce or evaluate quality attributes and

metrics, excluding papers that use metrics for other software engi-

neering purposes. We exclude these studies, since we expect that

the employed metrics have already been identified in the studies

in which they have been introduced (if published in one of the

examined publication venues). Using snowballing to identify met-

ric definitions that were published at venues outside the search-

ing scope of the study was not applied since searching specific

publication venues already resulted in a large number of primary

studies. 2 Nevertheless, in such papers metrics are only the means

for conducting the study rather than the goal/focus of the study.

Therefore, they have been excluded from our secondary study. In-

cluding them as primary studies, would bias the obtained dataset

by double-counting metrics that are used for different reasons. For

example, a study that uses Coupling Between Objects (CBO) and

Lack of Cohesion of Methods (LCOM) (Chidamber and Kemerer,

1994) to measure the effect of applying a certain refactoring is

not evaluating the usefulness of the metrics, but the usefulness

of the refactoring. Furthermore, since there is a lot of literature

on software quality (Jabangwe et al., 2004), we decided to narrow

the scope of this study to one type of quality attributes, namely

design-time quality attributes (Abran and Moore, 2004). The Soft-

ware Engineering Body of Knowledge (SWEBOK) defines design-

time quality attributes as any aspect of software quality that is not

discernible at run-time, (e.g., modifiability, reusability) (Abran and

Moore, 2004).
2 In total, we have examined more than 2800 articles, and therefore, we are con-

fident that we have included the majority of “good quality” studies, published in the

selected venues. Further increasing the number of primary studies would seriously

threaten the feasibility of this work and introduce additional threats to validity, e.g.,

due to additional filtering of articles.

a

d

a

l

o

n
The rest of the paper is organized as follows: In Section 2 ,

e discuss other secondary studies that are related to quality at-

ributes or metrics. Next, in Section 3 , we present the systematic

apping protocol, whereas in Sections 4 and 5 , we present and

iscuss the results of this mapping study, respectively. Finally, in

ection 6 , we present threats to validity, and in Section 7 we con-

lude the paper.

. Related work

In this section, we present secondary studies (namely system-

tic literature reviews and mapping studies) that are related to

uality attributes and metrics. Whenever possible, we compare the

oals of related work to our study and discuss points of differen-

iation. We do not discuss secondary studies that focus on run-

ime quality attributes, e.g., fault prediction (Catal and Diri, 2009;

adjenovi ́c et al., 2013), reliability (Febrero et al., 2014), etc., since

ur work is exploring design-time qualities. The rest of the sec-

ion is organized into two sections: (a) studies that are applica-

ion domain- or technology-agnostic, and (b) studies that are appli-

ation domain- or technology-specific. As technology-agnostic we

haracterize studies that do not aim at a specific programming

aradigm or language. In Fig. 2 , we summarize the relation of our

tudy to state-of-the-research on the topic of quality attributes and

etrics. A detailed comparison between our study and individual

elated work is provided in Sections 2.1 and 2.2 .

.1. Domain- or technology-agnostic studies

Tahir and MacDonell (2012) published a mapping study on dy-

amic metrics and software quality . Their work identified dynamic

etrics (i.e., metrics that capture the dynamic behavior of the soft-

are) that: (a) have been most frequently studied, and (b) could

e recommended as topics for future research. To achieve this goal,

hey searched for articles in a list of eight journals and nine confer-

nces/workshops. Sixty studies were identified and evaluated. As

 result, they extracted a strong body of research associated with

ynamic coupling and cohesion metrics, with most articles also

ddressing the abstract notion of software complexity. In a simi-

ar context, Elberzhager et al. (2012) presented a mapping study

n the combination of static and dynamic quality assurance tech-

iques (e.g., reported effects, characteristics, and constraints). The

E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77 55

s

X

fi

n

i

o

i

m

i

o

i

e

T

m

p

a

t

a

r

p

m

r

p

s

d

a

m

c

t

i

c

b

t

i

Z

a

e

m

o

n

q

p

d

p

fi

T

(

m

t

d

f

s

o

s

p

b

t

2

g

t

c

b

o

S

c

r

m

t

I

o

c

w

o

p

e

p

m

e

c

t

s

c

p

i

fi

a

o

a

fi

s

t

Q

g

w

J

C

c

r

w

a

i

p

a

g

t

q

d

f

a

o

o

t

a

a

a

d

s

(

m

w

c

p

2
earch was based on four digital libraries (Inspec, Compendex, IEEE

plore, and ACM DL). Fifty-one studies were selected and classi-

ed. The results suggest that the combination of static and dy-

amic analysis is an interesting research topic for enhancing code

nspection and testing activities. The main point of differentiation

f these studies, compared to our work is that we are interested

n all types of software metrics, and not limited only on dynamic

etrics.

Kitchenham (2010) conducted a preliminary mapping study to

dentify trends in influential papers on software metrics . The goal

f this paper was to investigate: (a) the relationship between the

nfluence of a paper and its publication venue (journal or confer-

nce) and (b) the type of validation performed on software metrics.

o identify such papers, the author used Scopus and found: (a) the

ost cited papers in the years 20 0 0–20 05, and (b) the least cited

apers in 2005. In particular, 87 papers were retrieved from IEEE

nd ACM DLs and Elsevier publications. The results suggested that

he most cited papers were more frequently published in journals,

nd that empirical validation was the most popular type of met-

ic evaluation rather than a theoretical one. Although this study

artially overlaps with contribution c2c (evidence related to the

apping between attributes and metrics) the results are not di-

ectly comparable: Kitchenham (2010) included in her study pa-

ers related to the use of software metrics for particular types of

oftware development activities (e.g. re-engineering or fault pre-

iction), whereas our study is focused on papers that introduce

nd evaluate metrics.

Riaz et al. (2009) presented a systematic review on software

aintainability prediction and metrics . Specifically, the study fo-

used on finding models that are able to forecast software main-

ainability. In addition to that, they explored the level of evidence

n these models and evaluate their significance. The search pro-

ess was performed on 9 databases; however, all 14 papers have

een retrieved only from 4 digital libraries. The results suggest

hat although the level of evidence on maintainability prediction

s rather limited, the models of van Koten and Gray (2006) , and

hou and Xu (2008) are more accurate ones to predict maintain-

bility. In a similar context, a recent mapping study by Jabangwe

t al. (2004) reported evidence on the link between object-oriented

etrics and external quality attributes . Jabangwe et al. focused

n four quality attributes: reliability, maintainability, effective-

ess, and functionality. To identify relevant studies, the authors

ueried five well-known digital libraries (ACM, IEEE, Scopus, Com-

endex, and Inspec) and identified 99 primary studies. Concerning

esign-time quality attributes, the most commonly studied one has

roven to be maintainability, which in most of the cases is quanti-

ed through the Chidamber and Kemerer (CK) metric suite (1994) .

he results of the studies of Riaz et al. (2009) , and Jabangwe et al.

2004) are comparable to ours; however, they both focus only on

aintainability (at least in terms of design-time QAs).

Genero et al. (2005) and Briand and Wüst (2002) performed

wo literature surveys: (a) on metrics that can be used on UML class

iagrams , and (b) on empirical studies that have been performed

or evaluating software quality models . The main difference of these

tudies compared to ours is with respect to the employed method-

logy (i.e., survey versus a systematic mapping study). However,

ome of the results are comparable, since Genero et al. (2005) re-

ort on tools that have been proposed for quantifying metrics, and

oth studies (Genero et al., 2005; Briand and Wüst, 2002) discuss

he level of empirical evidence related to well-known metric suites.

.2. Domain- or technology-specific studies

Abdellatief et al. (2013) published a mapping study to investi-

ate component-based software engineering (CBSE) metrics. In par-

icular, the authors explored the granularity of metrics (system- or
omponent-wide), the quality characteristics captured, and possi-

le limitations of the state of the art. The search was performed

n the following databases: ACM Digital Library, IEEE Explore,

pringer Link, Scopus, ScienceDirect and Google Scholar. On the

ompletion of the search process, 36 papers were selected. The

esults of the mapping study suggested that 17 of the proposed

etrics can be applied to evaluate component-based software sys-

ems, while 14 can be applied to evaluate individual components.

n addition, the outcome of this mapping study highlighted that

nly a few of the proposed metrics are properly defined. Con-

erning the overlap of the work of Abdellatief et al. to our study,

e have identified three major points of differentiation. The work

f Abdellatief et al.: (a) is focused only on CBSE systems—ours is

aradigm-agnostic, (b) is focused mostly on metrics—our work is

qually focused on metrics and quality attributes, and (c) includes

apers that use metrics for particular types of software develop-

ent activities—ours is focused only on studies that introduce and

valuate metrics/QAs.

Vargas et al. (2014) presented a mapping study that was dedi-

ated to Serious Games (SGs). Specifically, the study aimed to iden-

ify important quality attributes and possible gaps in the research

tate of the art that deserve future investigation. The search pro-

ess was performed on 6 digital libraries until April of 2013 (Sco-

us, ScienceDirect, Wiley, IEEE, ACM, and Springer). After apply-

ng the selection criteria, 112 studies were identified and classi-

ed (QAs, research results/methods, software artifacts, application

rea). The results of the study suggested that SG effectiveness and

ffered pleasure are the key-QAs in this domain, and that quality

ssessment is in the majority of the cases performed based on the

nal product. The work of Vargas et al. (2014) is different from our

tudy, since we performed a mapping study without any restric-

ion on the application domain, without focusing on the relevant

As, but further elaborate on metrics that quantify them.

Saraiva et al. (2012) published a mapping study that investi-

ated which metrics can be used to measure Aspect-Oriented soft-

are maintainability. The search strategy identified papers until

une 2011 and was conducted on four digital libraries (IEEE, ACM,

ompendex and ScienceDirect). At the end of the selection pro-

ess, 138 primary studies were selected. The results of the review

ecommended a catalogue that can guide researchers in selecting

hich metrics are suitable for their studies. The work of Saraiva et

l. (2012) presents substantial differences compared to our study,

n the sense that Saraiva et al. focus on a specific programming

aradigm (i.e., AOP) and a specific quality attribute (i.e., maintain-

bility). Oriol et al. (2014) presented a mapping study to investi-

ate quality models for web services. The goal of the study was

o identify the: (a) quality models relevant to web services, (b)

uality attributes that are referenced in the quality models, (c)

efinitions of the aforementioned quality attributes, and (d) most

requently investigated quality attribute across quality models. To

chieve this goal, Oriol et al. (2014) searched 3 databases (Web

f Science, IEEE and ACM) and retrieved 65 studies. The results

f the study included 47 models for web services that in most of

he cases include reliability, security and performance as quality

ttributes. Concerning the definition of quality attributes, Oriol et

l. suggest that only 51% of the examined models have a unique

nd consistent definition for all their quality attributes. The major

ifferences of our study to Oriol et al. (2014) are: (a) the domain

pecificity, and (b) metrics were outside the scope of Oriol et al.

2014) .

Kupiainen et al. (2015) published a literature review on using

etrics in industrial agile development. The goals of the study

ere to identify metrics, the reasons for applying them in an agile

ontext, and the most influential metrics in industry. The search

rocess was performed on: (a) Scopus and (b) the XP Conference

013 proceeding because it could not be found through Scopus. Af-

56 E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77

Table 1

Overview of research state-of-the-art.

Reference Demographics Selection of QAs Selection of Metrics

Year Focus of study #studies Application domain Dev. phases Dev. phases Validation Tools Mapping to QAs

Tahir and MacDonell 2012 Dynamic metrics 60 �

Elberzhager et al. 2012 Metrics 51 � �

Kitchenham 2010 Metrics 87 �

Riaz et al. 2009 Metrics maintainability 14 � � �

Jabangwe et al. 2014 Metrics reliability

maintainability

effectiveness

functionality

99 � �

Genero et al. 2005 Metrics design phase 13 � �

Briand and Wüst 2002 Quality models metrics 35 � �

Abdellatief et al. 2013 Metrics CBSE 36 � �

Vargas et al. 2014 QAs serious games 112 �

Saraiva et al. 2012 Metrics AOP

maintainability

138 � �

Oriol et al. 2014 Quality models web

services

65 �

Kupiainen et al. 2015 Metrics agile 30 �

Our study 2016 Metrics design-time QAs 154 � � � � � �

3

(

d

o

s

v

d

a

B

s

f

p

t

i

s

f

i

t

e
ter applying their selection criteria, 30 studies were identified. The

results of the study highlighted that the majority of agile metrics

are related to the process (e.g., progress tracking, sprint planning,

etc.). Additionally, Kupiainen et al. (2015) suggested that the most

influential metrics in agile software development are velocity and

effort estimates. The results of Kupiainen et al. (2015) focus on the

process level, which is an important differentiation aspect, com-

pared to our study, which is mostly interested in product metrics.

2.3. Overview

In Table 1 , we provide an overview of related work and a com-

parison between our study and other secondary studies. The table

is organized based on the expected contributions of our study: (a)

important QAs for application domains and development phases,

and (b) properties that can be used in metrics selection. Addi-

tionally, some demographics are reported (e.g., authors, year, etc.).

We also present the primary focus of each study, in terms of: (a)

QAs/metrics/both, (b) application domain, and (c) software devel-

opment technology.

Based on the aforementioned table, we can highlight that our

study goes beyond the state-of-research in various ways, as out-

lined below:

• Our study is the only one that investigates both metrics and

quality attributes . This point of differentiation is very impor-

tant in the sense that based on such data we can provide a syn-

thesis of results on both the metric and the quality attributes

level.
• Our study is the largest one in terms of primary studies , even

though our searching space is limited to top venues only
• Our study is the broader one since it does not focus on spe-

cific application domains, development phases, or software de-

velopment technologies. However, its level of detail does not

lack depth compared to existing domain- or technology-specific

studies, since it reports domain- and technology-specific re-

sults.

3. Study design

This section presents the protocol of the systematic mapping

study. A protocol constitutes a plan that describes research ques-

tions and how the secondary study has been conducted. Our pro-

tocol is presented according to the guidelines of Petersen et al.

(2008) .
.1. Objectives and research questions

The goal of this study, stated using the Goal-Question-Metrics

GQM) format (Basili et al., 1994) is: analyze existing literature on

esign-time quality attributes and related metrics for the purpose

f characterization with respect to their: (a) popularity in the re-

earch community, (b) differences across application domains, de-

elopment phases and programming paradigms, (c) empirical vali-

ation, and (d) tool support from the point of view of researchers

nd practitioners in the context of software quality assessment.

ased on the aforementioned goal, we have set the following re-

earch questions:

RQ 1 : Which quality attributes should be considered in a software

development project, based on the application domain of the

project and the current development phase?

RQ 1.1 : Which are the most studied quality attributes for each

application domain?

RQ 1.2 : Which are the most studied quality attributes for each

development phase?

RQ 1 is related to the selection of important quality attributes

or a specific project (see contribution c1). RQ 1.1 and RQ 1.2 are ex-

ected to highlight differences in how quality is treated, according

o the various backgrounds and needs of software engineers focus-

ng on specific domains or development phases.

RQ 2 : How can we effectively use quality metrics for assess-

ing/quantifying a specific quality attribute?

RQ 2.1 : Can a quality attribute be quantified as a function of

metrics?

RQ 2.2 : Which quality metrics are mapped to each quality at-

tribute?

RQ 2.3 : How much evidence exists about the validity of quality

metrics?

RQ 2.4 : What software quality metrics can be calculated in each

development phase?

RQ 2.5 : Is there tool support for automatically calculating soft-

ware quality metrics?

RQ 2 is related to contribution c2. RQ 2.1 is considered important

ince the quantification of the levels of quality attributes is needed

or the objective assessment of the quality attributes. RQ 2.2 is aux-

liary to RQ 2.1 since it provides a mapping between attributes and

he particular metrics used to assess them. We note that the differ-

nce between RQ and RQ is that RQ only focuses on which
2.1 2.2 2.1

E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77 57

Q

r

o

h

m

t

A

t

t

a

e

e

u

q

3

s

p

t

p

i

t

n

o

q

s

t

l

q

s

a

w

K

3

t

s

t

e

w

t

s

t

a

b

j

s

a

t

(

s

i

o

t

S

R

c

i

p

i

t

p

I

I

w

i

o

S

w

w

h

m

(

f

3

As can be assessed with metrics, and not through which met-

ics they can be assessed. On the contrary, RQ 2.2 focuses exactly

n which metrics can be used for quantifying certain QAs. To en-

ance the readability of this manuscript, in this paper we present

etrics only related to the most frequent quality attributes, but

he rest are still available in the accompanying technical report. 3

dditionally, RQ 2.3 highlights which metrics have been validated

heoretically, empirically, or in both ways, and therefore are safer

o be used (Briand et al., 1999). We ask RQ 2.4 for similar reasons

s RQ 1.2 , i.e., to investigate which quality metrics are applicable in

very development phase, and which are the most popular ones in

ach phase. Finally, RQ 2.5 aims at recording the tools that can be

sed for automating the calculation of metrics, thus supporting the

uality assessment process.

.2. Search process

We defined our search strategy considering the goal and re-

earch questions of the study. Specifically, we have selected not to

erform a search of the complete content of digital libraries, but to

ake into account only a limited number of selected venues. As ex-

lained in the introductory section, “quality” is a broad and often

ll-defined concept: A vast portion of software engineering litera-

ure touches on quality, since the ultimate goal of software engi-

eering research and practice is to ensure or improve the quality

f software systems. Consequently, we focus our search on “good

uality studies”, i.e., high-quality papers published at premium

oftware engineering venues. As described by Kitchenham et al.,

argeted searches at carefully selected venues are justified to omit

ow quality papers (Kitchenham et al., 2009a) and to avoid low

uality grey literature (Kitchenham et al., 2009a). The proposed

earch approach, i.e., selecting specific publication venues has been

pplied in other systematic secondary studies in the field of soft-

are engineering, such as (Galster et al., 2014; Cai and Card, 2008;

itchenham et al., 2009b).

.2.1. Selection of publication venues

Our search method is based on Cai and Card (2008) , where

he authors selected seven journals and seven conferences as the

earch space for their secondary study. In addition to selecting only

op venues of software engineering research, we explore only gen-

ral software engineering venues, and not venues related to soft-

are engineering phases (e.g., architecture, maintenance, valida-

ion and verification, etc.) or application domains (e.g., embedded

ystems, multimedia applications, etc.). The criteria that have been

aken into account while selecting the publication venues where:

cr.1. We only included venues which are classified “Computer

Software” by the Australian Research Council and evalu-

ated higher than or equal to level “B” (for journals) and

“A” (for conferences). We included venues with “B” because

rankings of scientific venues are usually not conclusive and

vary between ranking systems. We consider “Computer Soft-

ware”, because it is the category that includes the publica-

tion venues related to software engineering (among other

computer science disciplines that are included in “Computer

Software”).

cr.2. Searched venues had to be strictly from the software en-

gineering domain. The category “Computer Software” also

contains venues that do not focus on software engineering.

Other venues of very high quality and with a high rank-

ing and a large field rating (such as Communications of the

ACM) are excluded since they target a diverse audience and
3 http://www.cs.rug.nl/search/uploads/Resources/QA- QM- TR- 2016- 04.pdf .

a

a
therefore typically do not present in-depth research studies

on specific topics.

cr.3. Searched venues should not be related to a specific software

engineering application domain or development phase. Thus,

venues of very high quality, with a high ranking and a large

field rating (such as the International Requirements Engi-

neering Conference) are excluded since they target specific

domains/phases.

cr.4. We used the field rating of venues provided by Microsoft

Academic Research (http://academic.research.microsoft.com)

as the final criterion for venue quality. More specifically, we

exclude venues that do not have a field rating value. The

field rating is similar to the h-index, since it calculates the

number of publications by an author and the distribution of

citations over publications. Field rating only calculates pub-

lications and citations within a specific field and shows the

impact of the scholar or journal within that specific field.

The field rating from Microsoft Academic Research is, to the

best of our knowledge, the only source where you can ex-

tract the same venue quality measures for both journals and

conferences. Other measures, such as impact factor or ac-

ceptance rates have not been taken into account, because

they are not uniform across journals and conferences. Fur-

thermore, impact factors and acceptance rates are not avail-

able from one common source for all venues but would need

to be gathered from different sources, causing threats to the

reliability of the study.

The list and the scoring of each venue with respect to the

bovementioned criteria are presented in Appendix A , organized

y criteria (cr.1 to cr.4). The results of Appendix A , in terms of

ournals are identical to those of Wong et al. (2011) , who used the

ame seven journals for assessing top software engineering schol-

rs and institutions (Wong et al., 2011). Concerning conferences,

he results are in general in accordance to those of Cai and Card

2008) , by taking into account that we have excluded conferences

pecific to development phases (ISSTA and ISSRE); thus we agree

n the selection of four out of five conferences. The difference is

n the substitution of the Annual Computer Software and Applica-

ion Conference (COMPSAC) with the International Conference on

oftware Process (ICSP). COMPSAC is not rated from the Australian

esearch Council with an “A” ranking and therefore it was not in-

luded in the considered publication venue set.

The distribution channels that have been used for accessing the

dentified studies are the digital libraries, in which each venue is

ublishing their accepted articles. Therefore, we used the IEEE Dig-

tal Library for Transactions on Software Engineering (TSE), Interna-

ional Conference on Software Engineering (ICSE), International Sym-

osium on Empirical Software Engineering and Measurement (ESEM),

nternational Conference on Automated Software Engineering (ASE),

nternational Conference on Software Processes (ICSP), and IEEE Soft-

are (SW). We used the ACM Digital Library for identifying stud-

es published in Transactions on Software Engineering and Method-

logy (TOSEM) and International Symposium on the Foundations of

oftware Engineering (FSE). Articles published in the Empirical Soft-

are Engineering (ESE) journal have been retrieved from Springer ,

hereas papers published in Software: Practice and Experience (SPE)

ave been accessed through the Wiley on-line library. Finally, pri-

ary studies published in Information and Software Technology

IST) and Journal of Systems and Software (JSS) have been retrieved

rom the ScienceDirect library.

.2.2. Search string and search strategy

As keywords for the search string we have chosen to use simple

nd generic terms, which may yield as many meaningful results

s possible without any bias or preference to a certain quality at-

http://www.cs.rug.nl/search/uploads/Resources/QA-QM-TR-2016-04.pdf
http://academic.research.microsoft.com

58 E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77

Fig. 3. Overview of search process.

h

A

t

C

a

m

b

s

fi

(

r

(

i

c

l

A

m

t

3

i
tribute. The search string has been applied to the full text of the

manuscripts of all selected venues, without any time constraints

(we included articles published until June 2015). The search has

been conducted automatically through the digital libraries of each

venue. The final search string was:

“quality attribute” OR “quality characteristic” OR “quality

metric” OR “software metric” OR “software measurement”

OR “quality requirement” OR “quality framework” OR “non-

functional requirement” OR “non-functional requirement”

The search string was adjusted based on the capabilities of the

search engines. We note that all terms have been used in their

singular form, since their equivalent plural form would be iden-

tified through this search, in the sense that the singular form is

a sub-string of the plural one. In addition to that the majority of

search engines check plural automatically, and it is also expected

that the singular form of a word would be used in at least one of

the search fields (e.g., abstract, keywords, etc.). In order to validate

the fitness of the used search string we have used a “quasi-gold”

standard as proposed by Zhang et al. (2011) . This “quasi-gold” stan-

dard has been defined by manually searching the issues or pro-

ceedings of all venues (see Section 3.2.1 and Appendix A) for rele-

vant primary studies during 2014–2015. When manually searching

the venues, we have considered the full text. All studies identi-

fied in the manual search were also found in the automatic search

using the search string. This gives us confidence that the search

string was accurate.

3.2.3. Overview of selection process

In our systematic mapping, the selection of candidate primary

studies has been performed by automated search in specific publi-

cation venues (an overview is provided in Fig. 3).
In the primary selection procedure, the defined search string

as been applied to each publication source listed in the table of

ppendix A . As a result, a set of primary studies possibly related to

he research questions has been obtained. After this step, Table of

ontents (TOCs), editorials, keynotes, panels, workshop summaries,

nd biographies were manually removed from the candidate pri-

ary studies. The retrieved dataset was then automatically filtered

ased on the application of the following search string on each

tudy’s title, abstract and keyword:

(title | keywords | abstract = adaptability | changeability | cor-

rectability | comprehensibility | expandability | extensibil-

ity | flexibility | maintainability | modifiability | readability |

reusability | self-descriptiveness | stability | portability | testa-

bility | understandability) OR (title = metric | measurement |

measuring | measure)

The design-time quality attributes used in the aforementioned

ltering were retrieved from ISO/IEC/IEEE 24765:2010 vocabulary

2010). Based on this set, the full-text of each primary study was

ead and evaluated based on the inclusion and exclusion criteria

see Section 3.3). We note that we have selected to first search

n the full-text of the articles in order to apply a uniform pro-

ess in all selected digital libraries, since SpringerLink does not al-

ow the application of our search string in title/abstract/keywords.

fter retrieving the first dataset (by querying the full-text of the

anuscripts), the second filtering was performed on an external

ool, namely JabRef.

.3. Article filtering phases

Another important element of the systematic mapping planning

s to define the Inclusion Criteria (IC) and Exclusion Criteria (EC).

E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77 59

T

i

s

i

o

t

w

o

r

o

t

u

a

3

w

f

i

a

t

e

f

w

t

l

t

3

t

c

a

c

b

r

t

[

[

[

[

p

p

o
hese criteria are used as guidelines for including primary stud-

es that are relevant to answer the research questions and exclude

tudies that do not help answer them. A primary study is included

f it satisfies one or more ICs, and it is excluded if it satisfies one

r more ECs. The inclusion criteria of our systematic mapping are:

• IC1: The primary study defines one or more design-time

quality attributes;
• IC2: The primary study defines one or more design-time

metrics;
• IC3: The primary study evaluates one or more design-time

metrics;

This mapping study takes into account all typical exclusion cri-

eria, e.g. the paper is written in a language other than English or

as published as grey literature, which however are covered by

ur systematic selection of venues. The only other exclusion crite-

ion established is:

• EC1: The primary study is an editorial, position paper,

keynote, opinion, tutorial, poster or panel.
• EC2: The primary study uses metrics for evaluating a soft-

ware engineering process, method, or tool, without evaluat-

ing the metric per se or its ability to assess a quality at-

tribute.
• EC3: The primary study introduces or validates quality at-

tributes / software metrics that concern run-time properties,

or business / process indicators.

Every article selection phase has been handled by two members

f the team and possible conflicts have been resolved by the other

hree members. For each selected publication venue, we have doc-

mented the number of papers that were returned from the search

nd the number of papers finally selected (see Section 4).

.4. Keywording of abstracts (classification scheme)

In the study by Petersen et al. (2008) , the authors propose key-

ording of abstracts as a way to develop a classification scheme

or primary studies and to answer the research questions, if ex-

sting schemes do not fit, and ensure that the scheme takes into

ccount the identified primary studies. In our study, we expected

hat from the majority of primary studies we would not be able to

xtract all information required to answer the research questions

rom abstracts. As a consequence, we decided to apply the key-

ording technique to the full text of the manuscripts, i.e., to read

he full text of the studies in order to identify the values of the fol-

owing variables (used as classification dimensions): (a) quality at-

ributes, (b) quality metrics, and (c) software development phases.

.5. Data collection

During the data collection phase, we collected a set of variables

hat describe each primary study. At this point it is necessary to

larify that some variables presented in the keywording process

re included in this list as well to increase text uniformity and the

ompleteness of the list. Data collection was handled by two mem-

ers of the team and possible conflicts were resolved by the other

esearchers. For every study, we extracted and assigned values to

he following variables:

[V1] Title: Records the title of the paper.

[V2] Author: Recor ds the list of authors of the paper.

[V3] Year: Records the publication year of the paper.

[V4] Type of Paper: Records if the paper is published in a confer-

ence or journal .

[V5] Publication Venue: Records the name of the corresponding

journal or conference.
[V6] Application Domain: Records generic if the results are

domain-agnostic, or the name of the specific domain , if the

results are domain-specific. For example, as application do-

mains we have used: embedded systems, enterprise applica-

tions, web applications, etc.

[V7] Development Phase: Records the development phase that is

investigated in the primary study (e.g., requirements, archi-

tecture, design, implementation, testing)

[V8] Relationship of Study with Quality: Records if the study in-

troduces or evaluate s a quality attribute or metric. We note

that studies only using a quality attribute or a metric suite

(without validating them) have been excluded in the article

selection phase.

[V9] Names of Quality Attributes: Records a list of the names of

quality attributes investigated in the study. We note that

QAs should be explicitly mentioned in the paper, and are

recorded with the exact name introduced in the paper.

V10] Quality Attribute Associated with Quality Metric: Records

yes , if the study is associating a quality attribute with quality

metrics (e.g., CBO is connected with maintainability (Li and

Henry, 1993), or no if not.

[V11] Quantification of Quality Attributes through Quality Metrics:

Records yes , if the association of a quality attribute to a

set of metrics is able to produce a score for the QA (e.g.,

reusability = 0.5 ∗ Class Interface Size + 0.5 ∗ Design Size in

Classes + 0.25 ∗ Cohesion Among Methods of a Class – 0.25
∗ Direct Class Coupling (Bansiya and Davies, 2002), or no , if

not.

V12] Names of Quality Metrics: Records a list of the names of qual-

ity metrics investigated in the study.

V13] Programming Paradigm: Records the programming paradigm

in which a quality metric can be calculated (e.g. object -

oriented, functional)

[V14] Tool Availability for Quality Metrics: Records if a met-

ric/metric suite can be automatically calculated by a tool. In

particular, we record created by author, if the authors created

a tool for this reason, but without assigning a name. If the

authors reuse a tool or assigned a name to the tool that they

have created, we record the tool name .

V15] Quality Metric Level of Evidence: Records the level of met-

ric validation. According to Briand et al. (1999) , metric vali-

dation should be performed as a two-step process, i.e., pro-

viding a theoretical and empirical validation. The theoretical

validation aims at mathematically proving that a metric sat-

isfies certain criteria, whereas the empirical one aims at in-

vestigating the accuracy with which a specific metric quanti-

fies the corresponding quality attribute. Therefore, if a study

validates a metric only in a theoretical manner, we record

theoretical . If a study performs, only an empirical validation,

we record its empirical validation ranking , using the six levels

of evidence as described by Alves et al. (2010) :

1. No evidence.

2. Evidence obtained from demonstration or working out

toy examples.

3. Evidence obtained from expert opinions or observations.

4. Evidence obtained from academic studies (e.g., controlled

lab experiments).

5. Evidence obtained from industrial studies (e.g., causal

case studies).

6. Evidence obtained from industrial evidence.

Finally, if a study validates a metric both ways, we record com-

lete validation .

We note that some fields have been marked as “N/A” for some

rimary studies. For example, if a primary study defines QAs with-

ut referencing ways of measuring them, variables [V10]–[V15]

60 E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77

Table 2

Mapping of paper attributes to RQs.

Research question Variables used Synthesis method

RQ 1.1 [V6], [V9] Crosstabs for [V6], [V9]

RQ 1.2 [V7], [V9] Crosstabs for [V7], [V9]

RQ 2.1 [V9], [V10], [V11] Crosstabs for [V9], [V10]

Crosstabs for [V9], [V11]

RQ 2.2 [V12], [V9] Crosstabs for [V12], [V9]

RQ 2.3 [V12], [V15] Crosstabs for [V12], [V15]

RQ 2.4 [V7], [V12] Crosstabs for [V7], [V12]

RQ 2.5 [V12], [V14] Crosstabs for [V12], [V14]

Table 3

Study selection per publication venue.

Source Papers returned Papers automatically

filtered by title/abstract

Papers included

ASE 47 18 2

ESE 229 72 11

ESEM 172 64 9

FSE/ESEC 19 8 1

ICSE 165 61 7

ICSP 8 2 0

IST 674 240 37

JSS 800 326 47

SPE 136 40 4

SW 270 69 3

TOSEM 13 5 3

TSE 290 147 30

Total 2823 1052 154

4

f

m

t

g

e

p

o

m

q

a

o

t

4

a

m

i

i

i

c

B

i

a

f

s

s

4 Based on ISO-9126 maintainability decomposes to analyzability, changeability,

stability, testability, and compliance (2001).
5 Although usability is intuitively perceived as run-time quality attribute, in this

paper we only consider its design-time nature. For example, as a proxy of software

usability one can investigate aspects like manual adequacy, functional size, etc.
have been left blank. Similarly, if one primary study uses only soft-

ware quality metrics, without defining the QA that they quantify,

variables [V9] – [V11] have been left blank.

3.6. Data analysis

Variables [V1] – [V5] are used for documentation reasons. The

mapping between the rest of the variables and research questions

is provided in Table 2 , accompanied by the synthesis or analy-

sis methods used on the data. For both research questions, demo-

graphics have been provided through a frequency table of variables

[V9] and [V12], respectively for RQ 1 and RQ 2 .

4. Results

After searching and filtering as described in Sections 3.2 and

3.3 , we obtain a dataset of 154 primary studies. In Table 3 , for each

considered publication venue, we present the number of papers

that have been returned as candidate primary studies (step 1), the

number of papers qualified after primary study selection based on

title and abstract (step 2), and the final number of primary studies

(step 3)—see Fig. 3 .

The main reason for excluding papers in the manual filter-

ing phase (based on the full-text inspection) was that the studies

did not concern design-time quality attributes but either business-

related attributes (e.g., cost / effort / productivity estimation) or

run-time quality attributes (e.g. reliability, safety, fault prediction

and defect proneness). In the rest of this section, we present the

results of our mapping study, organized based on the research

questions. Therefore, in Section 4.1 (and its sub-sections) we dis-

cuss our findings related to the quality attributes, whereas in

Section 4.2 , we present our findings concerning software quality

metrics.
.1. Design-time quality attributes

As a starting point for our investigation, in Table 4 , we list the

requencies of design-time quality attributes as they appear in pri-

ary studies. In this table, apart from the name of the quality at-

ribute and the number of studies in which it has been investi-

ated, we also present its usual level in hierarchical quality mod-

ls (e.g., QMOOD (Bansiya and Davies, 2002), ISO-9126 (2001)). In

articular, as Low-Level (LL) we characterize only quality attributes

f the lowest level, i.e., those that can be directly calculated from

etrics (e.g., coupling is calculated through CBO). High-Level (HL)

uality attributes are attributes at any other level (e.g., maintain-

bility, stability, etc. 4). To keep the table relatively short, we list

nly the quality attributes that have been investigated in more

han two studies.

From the results of Table 4 various observations can be made:

• First, most of the low-level quality attributes are concentrated

in the top-frequency positions. In particular, 4 out of 6 LL_QAs

are ranked in the top-12 QAs, with regards to their frequency.

By performing a Spearman correlation between the level of QA

(High/Low) with their frequency ranking, we have validated the

existence of such a relationship with moderate strength (sig:

0.04, coefficient: 0.33). This is a rather intuitive result, in the

sense that LL_QA’s are easier to manage, due to their direct as-

sociation to metrics. The most frequently occurring LL_QAs are

complexity , cohesion , and coupling , which are the backbone of

object-oriented programming and many programming princi-

ples (Martin, 2003; Larman, 2004).
• Second, the number of high-level quality attributes is higher

than the number of low-level ones (i.e., in the table we can

identify 27 HL_QAs and 6 LL_QAs).
• Third, the top-studied HL_QA based on frequency is main-

tainability (approximately, 1 out of 5 studies), followed by

understandability and stability . Although understandability is

partially related to maintainability, we preferred to separately

report on its importance for two reasons: (a) some quality

models treat them separately. For example, QMOOD (Bansiya

and Davies, 2002) differentiates between flexibility, extensibil-

ity and understandability, and ISO-9126 (2001) describes un-

derstandability as a sub-characteristic of usability, 5 (b) software

understandability has managed to create a different research

community around it, as implied by the existence of many re-

lated, well-established conferences, e.g., the International Con-

ference on Program Comprehension (ICPC).

.1.1. Quality attributes and application domains (RQ 1.1)

In Table 5 , we present the results of cross-tabulating HL_QAs

nd application domains. In particular, for every application do-

ain, we record the name of HL_QAs and the number of stud-

es in which they have been investigated. We note that this list

s not exhaustive, since we only provide the most frequent qual-

ty attributes for each domain, whereas at the same time we ex-

luded application domains that are discussed in only one study.

ased on the obtained results, the majority of the studies (78%)

ntroduced or validated a quality attribute without specifying the

pplication domain. Regarding the rest of the studies, the most

requently studied application domains are: embedded systems (7

tudies), information systems (5 studies), database applications (5

tudies), web applications (4 studies), and distributed systems (3

E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77 61

Table 4

List of most frequently studied quality attributes.

Quality attributes Level Freq. Quality attributes Level Freq. Quality attributes Level Freq.

Complexity LL 35 Change proneness HL 7 Traceability HL 4

Maintainability HL 31 Size LL 7 Documentation HL 4

Cohesion LL 29 Analyzability HL 7 Portability HL 4

Coupling LL 17 Reusability HL 7 Accuracy HL 4

Stability HL 15 Efficiency HL 6 Operability HL 4

Understandability HL 15 Modularity HL 6 Comprehensibility HL 3

Testability HL 15 Adaptability HL 6 Correctness HL 3

Functionality HL 12 Learnability HL 5 Abstraction LL 3

Changeability HL 11 Suitability HL 5 Interoperability HL 3

Usability HL 11 Completeness HL 5 Installability HL 3

Inheritance LL 9 Consistency HL 5 Replaceability HL 3

Modifiability HL 9 Recoverability HL 4 Effectiveness HL 3

Table 5

List of most frequently QAs for each domain.

Application domain Quality attributes Freq. Application domain Quality attributes Freq.

Generic Maintainability ∗ 23 Embedded systems Correctness ∗ 2

Stability ∗ 12 Maintainability ∗ 2

Testability ∗ 11 Traceability 1

Understandability ∗ 9 Completeness ∗ 1

Changeability ∗ 8 Consistency ∗ 1

Change proneness 7 Volatility 1

Modifiability ∗ 7 Traceability 1

Functionality ∗ 6 Completeness 1

Usability ∗ 6 Consistency 1

Modularity 5 Documentation 1

Reusability ∗ 5 Memory Requirements 1

Analyzability ∗ 3 Reliability 1

Efficiency 3 Suitability 1

Adaptability ∗ 3 Information systems Functionality ∗ 2

Completeness ∗ 3 Efficiency 2

Learnability 2 Recoverability 2

Portability 2 Maintainability ∗ 2

Documentation 2 Traceability 2

Comprehensibility ∗ 2 Understandability 2

Consistency ∗ 2 27 additional QAs 1

Effectiveness ∗ 2 Database application Maintainability ∗ 2

Web Applications Functionality ∗ 2 10 additional QAs 1

Maintainability ∗ 1 Distributed systems Maintainability 1

Reusability ∗ 1 Comprehensibility 1

Locality 1

Modifiability 1

∗ These terms are duplicate in the table.

s

a

u

a

u

d

c

a

t

n

l

c

w

4

w

p

s

s

a

i

w

a

p

t

o

s
tudies). We note that for reporting the cross tabulation between

pplication domains and quality attributes, we have preferred to

se rather broad domains, so that results are meaningful. For ex-

mple, we preferred to merge enterprise and business applications

nder the common term information systems, so that this broad

omain to represented in 5 studies.

By comparing domain-specific and domain-agnostic studies, we

an observe that maintainability , testability , understandability

nd changeability are the most frequently studied quality at-

ributes, regardless of the application domain. Similarly, effective-

ess, comprehensibility, documentation and portability are the

east frequently studied domain-agnostic quality attributes. Con-

erning differences between domain-specific and agnostic studies,

e have been able to identify two groups:

• Quality attributes that are more frequently used in domain-specific

studies . In this group, we have classified functionality, usability,

consistency, learnability , and analysability . For example, func-

tionality is of particular interest (50% of the studies) in appli-

cation domains that are users-centric, e.g. enterprise, business,

and web applications.
• Quality attributes that are more frequently used in domain-

agnostic studies . In this group, we have classified stability,
change proneness, modifiability, and modularity . An interest-

ing observation concerning the quality attributes of this group

is that all of them are sub-characteristics of maintainability.

This is an indication that studies emphasizing on specific appli-

cation domains are more probable to focus on maintainability,

rather than others.

.1.2. Quality attributes and development phases (RQ1.2)

In this section, we discuss the main findings of this study,

ith respect to the relationship between HL_QAs and development

hases. In particular, in Table 6 , we list the cross-tabulation of all

oftware development phases with the most frequent HL_QAs.

From Table 6 , we observe that during the maintenance phase,

oftware engineering researchers are interested only in maintain-

bility and its sub-characteristics . Similarly, during the design and

mplementation phases, the focus is again on maintainability , but

ith some additional emphasis on testability . In addition, maintain-

bility is the most frequently studied QA, in all phases, except from

roject management and requirements engineering. Concerning

he requirements phase, an interesting finding is the fact that 3

ut of 5 most studied QAs (i.e., traceability, completeness, and con-

istency) are related only to the specific phase. Furthermore, the

62 E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77

Table 6

List of most frequently QAs for each development phase.

Development Phase Quality attributes Freq. Development Phase Quality attributes Freq.

Implementation Maintainability ∗ 13 Project management Functionality ∗ 4

Stability ∗ 4 Usability ∗ 4

Change proneness ∗ 4 Efficiency ∗ 3

Modifiability ∗ 3 Maintainability ∗ 3

Modularity ∗ 3 Analyzability ∗ 3

Functionality ∗ 3 Changeability ∗ 3

Testability ∗ 3 Stability ∗ 3

Adaptability ∗ 3

Design Maintainability ∗ 7 Architecture Maintainability ∗ 7

Testability ∗ 5 Functionality ∗ 3

Understandability ∗ 5 Adaptability ∗ 3

Modifiability ∗ 4 Efficiency ∗ 2

Change proneness ∗ 3 Recoverability 2

Analyzability ∗ 3 Usability ∗ 2

Stability ∗ 3 Understandability ∗ 2

Learnability 2

Modularity ∗ 2

Requirements Traceability 3 Maintenance Maintainability ∗ 4

Completeness 3 Changeability ∗ 3

Consistency 3 Stability ∗ 1

Stability ∗ 3 Testing Testability ∗ 4

Understandability ∗ 3

∗ These terms are duplicate in the table.

Table 7

List of most frequently studied quality metrics.

Quality metrics LL_QAs Frequencies

Lack of Cohesion of Methods-1 (LCOM1) Cohesion 23

Lines of Code (LOC) Size 23

Halstead n1 Complexity 20

Halstead n2 Complexity 20

Cyclomatic Complexity (CC-VG) Complexity 17

Depth of Inheritance Tree (DIT) Inheritance 17

Tight Class Cohesion (TCC) Cohesion 16

Weighted Methods per Class (WMC) Complexity 15

Response for Class (RFC) Coupling 15

Number of Children (NOCC) Inheritance 14

Coupling Between Objects (CBO) Coupling 13

Number of Methods (NOM) Size 12

Loose Class Cohesion(LCC) Cohesion 12

Message Passing Coupling (MPC) Coupling 10

Cohesion(Coh) Cohesion 10

Lack of Cohesion of Methods-2 (LCOM2) Cohesion 10

Lack of Cohesion of Methods-5 (LCOM5) Cohesion 10

Data Abstraction Coupling (DAC) Coupling 9

Lack of Cohesion of Methods-3 (LCOM3) Cohesion 9

Lack of Cohesion of Methods-4 (LCOM4) Cohesion 8

t

f

t

m

o

T

i

l

o

a

t

(

fi

q

4

f

m

researchers.
interplay between requirements and design that is addressed in

the architecture phase is evident through the importance of func-

tionality in the corresponding phase. Finally, as expected, function-

ality is more important during the first development phases, i.e.,

project management and architecting.

4.2. Quantification/Assessment of quality attributes through software

metrics

In this section, we present the results of our mapping study

related to software quality metrics. From the 154 primary studies

originally obtained during our paper selection process, 136 papers

(87.4%) involved software metrics. The rest of this section deals

only with these studies. The section is organized by sub-research

question. In Table 7 , we present the top-20 most frequently stud-

ied metrics (answering RQ 2). In addition to that, in Table 7 , we

map the quality metric to the LL_QA that it quantifies.

Based on the results of Table 7 , we can observe that all met-

rics proposed by Chidamber and Kemerer (1994) appear in the list

of most frequently studied metrics. Concerning other metric suites,
he only metric from the Li and Henry (1993) suite that is missing

rom Table 7 is SIZE2 (i.e., sum of attributes and methods). Addi-

ionally, in the list we can identify two metrics from the Halstead

etric suite (Halstead, 1977) that are not specific for the object-

riented paradigm.

Regarding the quantification of LL_QAs , the results of

able 7 suggest that the most popular quality attribute that

s supported by metrics is cohesion , which is represented in the

ist with 8 metrics. A possible explanation for that is the debate

n the accuracy and validity of LCOM1 and LCOM2, which opened

 research direction on how cohesion should be quantified. Addi-

ionally, in Table 7 we can identify metrics that quantify both lack

e.g., LCOM1) and presence (TCC) of cohesion. Another interesting

nding is that although complexity is the most studied low-level

uality attribute (see Table 4) in Table 7 we can only identify

 complexity metrics. This observation can be explained by the

act that all complexity metrics are very popular (4 out of top-8

etrics), implying that its quantification is rather uniform from

E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77 63

4

c

b

m

m

w

i

t

a

t

c

(

c

e

q

S

m

6

o

e

a

T

Q

c

H

v

r

H

Table 8

QAs quantification.

Quality attributes

QA associated with

metrics

QA quantified as a

formula of metrics

Yes No Yes No

Maintainability 25 6 9 16

Stability 12 3 5 7

Understandability 9 6 6 3

Testability 13 2 7 6

Functionality 6 6 6 0

Changeability 7 4 3 4

Usability 6 5 3 3

Modifiability 6 3 0 6

Change Proneness 7 0 1 6

Analyzability 4 3 2 2

Reusability 6 1 5 1

Efficiency 2 4 2 0

Modularity 5 1 1 4

Adaptability 3 3 2 1

Learnability 3 2 3 0

Suitability 3 2 2 1

Completeness 4 1 1 3

Consistency 4 1 1 3

Recoverability 2 2 2 0

Traceability 2 2 0 2

Portability 1 3 1 0

Accuracy 2 2 2 0

Comprehensibility 3 0 1 2

Documentation 2 1 0 2

Correctness 2 1 0 2

Interoperability 1 2 1 0

Installability 1 2 1 0

Replaceability 1 2 1 0

Effectiveness 2 1 0 2

Readability 1 1 0 1

Locality 2 0 0 2

Volatility 2 0 0 2

Maturity 1 1 1 0

Co-existence 1 1 1 0

Conciseness 2 0 0 2

Clarity 1 0 0 1

Serviceability 1 0 0 1

Predictability 1 0 0 1

Compatibility 1 0 0 1

Unambiguity 1 0 0 1

Ambiguity 0 1 0 0

Compliance 1 0 1 0

Change impact 1 0 0 1

Evolveability 0 1 0 0

Sharing 0 1 0 0

Flexibility 0 1 0 0

Utilization 0 1 0 0

Openness 0 1 0 0

Soundness 1 0 0 1

Validity 1 0 0 1

Variability 1 0 1 0

Availability 0 1 0 0

Attractiveness 0 1 0 0

Customizability 0 1 0 0

Navigability 0 1 0 0

Simplicity 1 0 0 1

Total 164 84 72 92

4

u

q

l

a

o

i

6 In particular, from Table 4 , we selected the top-11 quality attributes, since the
th th
.2.1. Quantification of quality attributes (RQ 2.1)

In this section, we discuss the extent to which quality attributes

an be quantified through metrics. In particular, we discriminate

etween two categories: (a) QA that are assessed through a single

etric, and (b) QAs that are assessed through the combination of

ore than one metrics. We clarify that this research question (i.e.,

hich quality attributes are more frequently associated with metrics)

s only relevant for HL_QAs, in the sense that the association be-

ween LL_QAs and metrics always exists (e.g., all cohesion metrics

re related to cohesion) and quantifying LL_QA’s can be mapped

o metrics calculation (e.g., cyclomatic complexity = edges in a flow

hart – nodes in a flow chart + 2 ∗terminal nodes, CC = L – N + 2P

 McCabe, 1976)). Also, we note that this RQ does not aim to asso-

iate specific metrics to quality attributes, but only investigates the

xistence of such a relationship. The exact mapping of metrics and

uality attributes is provided by answering RQ 2.2 .

The results gathered to answer RQ 2.1 are presented in Table 8 .

pecifically, for every HL_QA (row), we record the following infor-

ation:

• Association to metrics . The count of primary studies that asso-

ciate the HL_QA to metrics (column: 2) and those that do not

(column: 3); and

• Quantification through a combination of metrics . Although a

QA might be associated with some metrics (e.g., maintainabil-

ity is related to CBO and LCOM), it is not always quantified as

a function of these metrics. In these columns, we present the

count of primary studies that provide a formula for quantifying

the HL_QA based on metrics (column: 4), and those that do not

(column: 5). We note that the count of columns 4 and 5, sums

up to column 2, since studies that do not associate a QA with

metrics are not able to provide such a formula.

From the results presented in Table 8 , it can be observed that

6.1% of the studies associate HL_QAs with metrics. Furthermore,

nly ten HL_QAs have not been associated with any metric. How-

ver, this result does not imply that these QAs are not measur-

ble, since they have been investigated in only one paper each.

herefore, it might be possible that metrics associated with these

As might be presented in publication venues that have not been

onsidered in this study. Additionally, approximately only half of

L_QAs (43.9%) use these metrics as factors in a function that pro-

ides an aggregated measurement for the quality attribute. The

est of the discussion, concerning RQ 2.1 , is focused on the top-15

L_QAs in terms of frequency (see Table 4):

• The HL_QA that is most consistently related to metrics is change

proneness , which has been associated with metrics in all 7

studies that it has been mentioned (100%).
• Similarly, high percentages can be observed for testability and

reusability (86%), modularity (83%), and maintainability and

stability (80%).
• The QA that has most frequently been associated with metrics,

in absolute numbers, is maintainability, since 25 studies have

associated at least one metric with it. The association of these

QAs to metrics does not always lead to the quantification of the

attribute through a function that aggregates these metrics .
• In particular, only 14% of studies provide a way to combine

metrics to quantify change proneness . This percentage is rather

low also for modularity (16%), maintainability (29%), and sta-

bility (33%).
• The QAs that appear to be more frequently associated with

metric aggregation functions are reusability (71%), functional-

ity (58%), and testability (46%). We note that there is no study

that quantifies modifiability through an aggregation function,

despite the fact that 6 studies have connected it to several met-
rics. 1
.2.2. Quality attributes and quality metrics (RQ 2.2)

In Table 9 , we present the metrics that are more frequently

sed to assess high-level quality attributes. The list of high-level

uality attributes in Table 9 , is again not exhaustive, but is only

imited to the top-10 most frequently studied high-level 6 quality

ttributes (see Table 4). We note that metrics that appear only in

ne study are omitted from the table (e.g., metrics for functional-

ty, usability, changeability, and analyzability).
0 and the 11 quality attributes are having equal frequencies.

64 E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77

Table 9

Association between QAs and quality metrics.

Quality attributes Quality metrics Freq. Quality attributes Quality metrics Freq.

Maintainability Depth of Inheritance Tree (DIT) ∗ 6 Change proneness Depth of Inheritance Tree (DIT) ∗ 3

Lines of Code (LOC) ∗ 6 Number of Children (NOCC) ∗ 3

Weighted Methods per Class (WMC) ∗ 6 Coupling Between Objects (CBO) ∗ 3

Cyclomatic Complexity (CC-VG) 5 Response for Class (RFC) ∗ 3

Lack of Cohesion of Methods-1 (LCOM1) ∗ 5 Lack of Cohesion of Methods-1 (LCOM1) ∗ 3

Tight Class Cohesion (TCC) 4 Data Abstraction Coupling (DAC) ∗ 3

Number of Children (NOCC) ∗ 4 Number of Attributes (NA) 3

Response for Class (RFC) ∗ 4 Understand ability Lines of Code (LOC) ∗ 3

Message Passing Coupling (MPC) ∗ 4 Depth of Inheritance Tree (DIT) ∗ 2

Data Abstraction Coupling (DAC) ∗ 4 External Class Complexity (ECC) ∗ 2

Number of Methods(NOM) 4 External Class Size (ECS) ∗ 2

Reusability Lack of Cohesion of Methods-1 (LCOM1) ∗ 3 Testability Response for Class (RFC) ∗ 4

Lines of Code (LOC) ∗ 2 Coupling Between Objects (CBO) ∗ 3

Coupling Between Objects (CBO) ∗ 2 Lack of Cohesion of Methods-1 (LCOM1) ∗ 3

Response for Class (RFC) ∗ 2 Lines of Code (LOC) ∗ 3

Message Passing Coupling (MPC) ∗ 2 Modifiability Depth of Inheritance Tree (DIT) ∗ 2

Weighted Methods per Class (WMC) ∗ 2 Halstead n1 2

Number of Children (NOCC) ∗ 2 Halstead n2 2

External Class Complexity (ECC) ∗ 2 Stability Weighted Methods per Class (WMC) ∗ 2

External Class Size (ECS) ∗ 2 Lines of Code (LOC) ∗ 2

System Design Stability (SDI) 2

∗ These terms are duplicate in the table.

Table 10

Type of metrics validation.

Validation type Number of studies Number of metrics

Complete validation 11 (8 .0%) 96

Only empirical 101 (73 .7%) 514

Only theoretical 2 (1 .5%) 7

No validation 23 (16 .8%) 317

d

M

n

o

m

t

r

h

o

c

o

b

e

e

L

i

p

t

T

c

S

i

m

e

r

a

a

r

F

a

m
Based on the results presented in Table 9 , we can suggest that

most of the high-level quality attributes are quantified through a

limited number of metrics, and specifically the Chidamber and Ke-

merer (1994) and the Li and Henry (1993) suites, suggesting that

the same metric can be used for assessing more than one attribute.

This is a rather intuitive result in the sense that these are the

most-known metric suites. The only metrics outside these suites

that appear in the list are: System Design Stability Index (SDI), Ex-

ternal Class Complexity (ECC), and External Class Size (ECS). How-

ever, we need to clarify that these metrics are only used in two

studies each. The most interesting finding concerning this research

question is the identification of quality attributes that have not

been related to specific metrics. These high-level quality attributes

have been omitted from Table 9 . A list of the aforementioned qual-

ity attributes is provided and described below:

• Functionality . Although investigated in 12 papers and associ-

ated with 45 metrics, no metric has been used in more than

one paper.
• Usability . Despite the fact that it is studied in 11 papers and is

associated with 49 metrics, no metric has been used in more

than one paper.
• Changeability. Although investigated in 11 studies and associ-

ated with 66 metrics, one metric (namely: change size) is used

in two papers.
• Analyzability . Despite the fact that it is studied in 7 papers and

is associated with 29 metrics, no metric has been used in more

than one paper.

4.2.3. Validation of software metrics (RQ 2.3)

With respect to the level of validation, we have classified the

studies into four categories: only theoretical validation, only empir-

ical validation, complete validation (i.e., both theoretical and em-

pirical), and no validation (i.e., neither empirical nor theoretical).

The frequency of each category is presented in Table 10 . We note

that the 137 studies involving metrics can be classified to studies

that: (a) introduce a metric, with or without validating it (56.2%),

and (b) validate a metric (43.8%). From the results of Table 10 , we

can observe that only a small portion of the papers have both

empirically and theoretically validated the corresponding metrics

(8.0%). The majority of studies (i.e., 73.7%) have validated the pro-

posed metrics by employing an empirical research method. More
etails on specific research methods can be found in Table 11 .

oreover, we highlight that the number of papers that perform

o validation is non-negligible, i.e., 16.8%. Finally, by focusing only

n studies that introduce metrics, we note that approximately 30%

etric introductions are not accompanied with a metric valida-

ion. We note that this statement does not imply that 30% of met-

ics have not been validated, since a large number of metrics that

ave been introduced without evaluation, are later on validated in

ther, independent, studies.

Regarding individual metrics, our results suggest that only (11)

ohesion and (5) complexity metrics have been validated both the-

retically and empirically at the highest level of evidence—i.e., 5

ased on the scale of Alves et al. (2010) . By considering all lev-

ls of evidence, more than 100 metrics have been validated both

mpirically and theoretically. Among these metrics, only LCOM1,

COM2, and LCOM5 have been validated in two different studies,

ncreasing the reliability of their assessment.

Next, since the majority of the studies have employed an em-

irical validation method we further analyze them, with respect

o the level of empirical evidence they provide. In particular, in

able 11 we present a mapping of metrics and the level of empiri-

al validation they have received based on Alves et al. (2010) (see

ection 3.5). We note that the results presented in Table 11 do not

mply the correctness of applying the specific empirical research

ethod, but only the frequency of their application. Although an

valuation of the quality of each study would unveil their rigor and

elevance, and potentially provide further useful information, such

n investigation falls outside the scope of this mapping study. Usu-

lly, studies’ quality assessment is part of a systematic literature

eview, and thus consists an interesting extension of this study.

rom the results of Table 11 , it becomes clear that some metrics

re linked to numerous papers, since they have been validated by

any studies. For example, we can observe that 25 studies have

E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77 65

Table 11

Mapping between metrics and level of empirical validation evidence.

Level of evidence Quality metrics Freq. Level of evidence Quality metrics Freq.

Level 6 (4 .46%) Depth of Inheritance Tree (DIT) ∗ 2 Level 3 (19 .64%) Lack of Cohesion of Methods-1 (LCOM1) ∗ 4

Number of Children (NOCC) 2 Lack of Cohesion of Methods-4 (LCOM4) ∗ 3

Response for Class (RFC) ∗ 2 Lack of Cohesion of Methods-5 (LCOM5) ∗ 3

Lack of Cohesion of Methods-1 (LCOM1) ∗ 2 Tight Class Cohesion (TCC) ∗ 3

Weighted Methods per Class (WMC) ∗ 2 Loose Class Cohesion (LCC) 3

Level 5 (16 .07%) Lack of Cohesion of Methods-1 (LCOM1) ∗ 7 Level 2 (17 .86%) Halstead n1 2

Lack of Cohesion of Methods-2 (LCOM2) ∗ 6 Halstead n2 2

Cohesion (Coh) ∗ 6 Input Complexity (Cin) 1

Tight Class Cohesion (TCC) ∗ 6 Output Complexity (Cout) 1

Lines of Code (LOC) ∗ 5 Complexity (C) 1

Level 4 (41 .96%) Halstead n1 18

Halstead n2 18

Lines of Code (LOC) ∗ 17

Cyclomatic Complexity (CC-VG) ∗ 16

Lack of Cohesion of Methods-1 (LCOM1) ∗ 12

Depth of Inheritance Tree (DIT) ∗ 12

Coupling Between Objects (CBO) 9

Response for Class (RFC) ∗ 9

Halstead n 7

Halstead v 7

∗ These terms are duplicate in the table.

v

a

c

t

s

v

f

4

o

T

e

t

L

m

t

e

2

F

1

l

t

t

d

c

b

p

l

s

4

c

c

d

t

c

u

n

m

s

L

v

alidated the relationship between LCOM1 and various QAs. Such

 corpus of linked papers can provide a holistic assessment of the

apabilities of each metric. Similarly to before, we note that syn-

hesizing this information is out of the scope of this study, since

uch aggregations are usual an outcome of systematic literature re-

iews and not mapping studies.

From the 136 studies that involve metrics, 112 provide some

orm of empirical validation, classified as follows:

• 17.86% of the studies obtained evidence from demonstration or

working out toy examples . These studies have in total validated

167 software metrics.
• 19.64% of the studies obtained evidence from expert opinions

or observations , validating in total 117 software metrics.
• 41.96% of the studies obtained evidence from studies executed

in an academic environment . These studies have in total vali-

dated 371 software metrics.
• 16.07% of the studies obtained evidence from causal case stud-

ies in an industrial context , validating in total 99 software

metrics.
• 4.46% of the studies obtained evidence from methods already

approved and adopted in industries . These studies have in total

validated 17 software metrics.

.2.4. Quality metrics and software development phases (RQ 2.4)

To answer RQ 2.4 , in Table 12 , we present the cross-tabulation

f development phases and quality metrics. We note that from

able 12 , we have excluded phases (i.e., testing and requirements

ngineering) that are related to very few metrics. In particular,

esting has been associated with 89 metrics, from which only

COM1 and RFC appear in two studies. Additionally, the require-

ents phase has been connected to 73 metrics, from which only

he number of use cases appears in two studies.

In the literature, software metrics can be classified into two cat-

gories: design-level and code-level metrics (Al Dallal and Briand,

012), based on the earliest phase in which they can be calculated.

or example, LCOM1 (Lack of Cohesion-1 (Chidamber and Kemerer,

994)) that requires knowledge on the method body can be calcu-

ated at the implementation level, whereas DIT (Depth of Inheri-

ance Tree, (Chidamber and Kemerer, 1994)), which only requires

he existence of inheritance relationships can be calculated at the

esign phase. In the general case the results of Table 12 are in ac-

ordance to this definition. However, some interesting findings can

e highlighted:
• Cyclomatic Complexity (CC) (McCabe, 1976), although calcu-

lated at source code level, three studies use it at the architec-

tural level, by aggregating methods’ cyclomatic complexity to

the component level. This practice is quite common in the ar-

chitecture community, which lacks specific metrics. The lack of

architecture level metrics is discussed in the Software Architec-

ture Metrics (SAM) workshop, which is active the last two years

(Nord et al., 2014).
• Depth of Inheritance Tree (DIT) (Chidamber and Kemerer,

1994), Number of Children Classes (NOCC) (Chidamber and Ke-

merer, 1994), and Number of Methods (NOM) (Li and Henry ,

1993), although they can be calculated from the design phase,

they are also valid at the source code level. Therefore, the stud-

ies that employ them are not violating the aforementioned clas-

sification.
• Response for a Class (RFC) (Chidamber and Kemerer, 1994),

Tight Class Cohesion (TCC) (Bieman and Kang, 1995), and Loose

Class Cohesion (LCC) (Bieman and Kang, 1995), need informa-

tion from the source code level to be calculated. However, some

studies are calculating them at the design phase (i.e., from de-

sign artifacts).

The rest metrics on architecture phase (except cyclomatic com-

lexity), are purely architectural metrics that require only high-

evel design artifacts. Therefore, they can provide the earliest pos-

ible quality assessment.

.2.5. Quality metrics and tools (RQ 2.5)

Concerning the use of tools that have been employed for the

alculation of metrics, we have been able to identify two main

ategories: (a) tools that have not been assigned a name by their

evelopers—these tools are usually academic ones, or simple pro-

otypes, and (b) named tools. In this mapping study, we have dis-

overed 19 named tools. However, the majority of the studies have

sed unnamed tools. The list of metrics that are calculated by un-

amed tools is presented in the list below. The list refers to unique

etrics and not sets of metrics. For example, the first bullet items

uggest that there are 5 studies that provide tools to calculate

COM1, and 5 (different or maybe overlapping) studies that pro-

ide tools for NOCC.

• 5 studies : Lack of Cohesion of Methods-1 (LCOM1) and Number

of Children (NOCC).

66 E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77

Table. 12

List of most frequently metrics for each development phase.

Develop. phase Quality metrics Freq. Develop. phase Quality metrics Freq.

Implementation Halstead n1 20 Design Depth of Inheritance Tree (DIT) ∗ 5

Halstead n2 20 Number of Children (NOCC) ∗ 4

Lack of Cohesion of Methods-1 (LCOM1) ∗ 20 Response for Class (RFC) ∗ 4

Lines of Code (LOC) ∗ 18 Tight Class Cohesion (TCC) ∗ 4

Cyclomatic Complexity (CC-VG) ∗ 12 Weighted Methods per Class (WMC) ∗ 3

Depth of Inheritance Tree (DIT) ∗ 10 Coupling Between Objects (CBO) ∗ 3

Weighted Methods per Class (WMC) ∗ 10 Loose Class Cohesion (LCC) 3

Tight Class Cohesion (TCC) ∗ 9 Architecture Cyclomatic Complexity (CC-VG) ∗ 3

Number of Children (NOCC) ∗ 9 Coupling Factor (CF) 2

Number of Methods (NOM) 9 Coupling Between Objects (CBO) ∗ 2

Response for a Class (RFC) ∗ 9 Number of Modules 2

Lack of Cohesion of Methods-5 (LCOM5) 8 Information Flow (Fan-Out) ∗ 2

Message Passing Coupling (MPC) 8 Non-Functional Coverage (NC) 2

Maintenance Depth of Inheritance Tree (DIT) ∗ 2 Absolute Adaptability of a Service (AAS) 2

Weighted Methods per Class (WMC) ∗ 2 Relative Adaptability of a Service (RAS) 2

Lines of Code (LOC) ∗ 2 Mean of Absolute Adaptability of a Service (MAAS) 2

Information Flow (Fan-In) 2 Mean of Relative Adaptability of a Service (MRAS) 2

Information Flow (Fan-Out) ∗ 2 Level of System Adaptability (LSA) 2

∗ These terms are duplicate in the table.

Table. 13

List of tools.

Tool Name Num. of Metrics

Columbus 64

aToucan 61

Tooms 52

Eclipse-based 25

Access tool of the discover environment 22

Fortranal 21

Metrics plug-in 17

The hyss tool 11

The patricia/testmetrics 10

gen ++ 10

Connecta 6

Open source 6

Solar 5

Together 5

Sourcemonitor 4

Concernmorph 4

irc2m 4

xml-based parser 3

Rest 2

5

p

l

r

t

5

s

t

w

p

a

5

t

q

a

o

a

2

q

p

p

o

a

i

c

t

s

o

v

/

i

e

i

a

i

D

c
• 4 studies : Tight Class Cohesion (TCC), Depth of Inheritance

Tree (DIT), Coupling between Objects (CBO), Response for Class

(RFC), and Loose Class Cohesion (LCC).
• 3 studies : Weighted Methods per Class (WMC), Number of

Attributes (NA), Message Passing Coupling (MPC), Number of

Methods (NOM), and Cohesion Among Methods in a Class

(CAM).
• 2 studies : Lines of Code (LOC), Lack of Cohesion of Methods-

2 (LCOM2), Lack of Cohesion of Methods-3 (LCOM3), Method-

Method through Attributes Cohesion (MMAC), Number of An-

cestors (NOA), Data Abstraction Coupling (DAC), and Other Class

Method Export Coupling (OCMEC).

The rest of the tools (i.e., those that have been given a name)

are summarized in Table 13 . Explicitly naming the metrics that

each tool is calculating is out of the scope of this mapping study,

however, the interested reader can access them in the accompa-

nying technical report (a link is provided in footnote 3 in page

7). From the results of Table 13 , we can observe that the ma-

jority of authors do not explicitly name the tools that they de-

velop. Although this does not threaten the validity of the original

manuscript, it hinders reusability and establishment of metric cal-

culating tools.
. Discussion

In this section, we discuss the main outcomes of this map-

ing study by interpreting our findings , by comparing them to re-

ated work (when applicable), by synthesizing the results of each sub-

esearch question to answer the main RQs , and by providing implica-

ions to researchers and practitioners .

.1. Interpretation of the results

In this section, we provide an interpretation of the obtained re-

ults and a comparison to related work. In Section 5.1.1 , we discuss

he main findings, with respect to quality attributes and metrics,

hereas in Section 5.1.2 , we discuss the outcomes related to ap-

lication domains, development phases, programming paradigms,

nd tools.

.1.1. Quality attributes and metrics

Based on the findings of our mapping study, we suggest that

he most frequently studied quality attributes are the low-level

uality attributes (i.e., complexity, cohesion, and coupling). This is

n expected outcome, because they are considered as cornerstones

f the object-oriented programming paradigm, since many patterns

nd principles (e.g., Gamma et al., 1994; Martin, 2003; Larman,

004) are based on such QAs. The fact that complexity is more fre-

uently studied than coupling and cohesion is probably due to the

opularity of complexity within and outside the object-oriented

aradigm, while coupling and cohesion are more popular in object-

rientation (they can be defined at module level as well). Finally,

 possible explanation on the popularity of cohesion over coupling

s the fact that some cohesion metrics (e.g., LCOM) have received

riticism and the search of new measures was more intense. On

he other hand, the top-studied HL_QA is maintainability . This re-

ult can be explained by the already widely accepted importance

f maintenance in the software lifecycle. For example, according to

an Vliet maintenance costs consume 50 – 75% of the total time

 effort budget of a typical software project (van Vliet, 1993). The

mportance of maintainability can be further emphasized by the

xistence in the list of some very similar HL_QAs (e.g., changeabil-

ty, modifiability, etc.) and its sub-characteristics (e.g., stability, an-

lyzability, modularity, adaptability, etc.). The aforementioned find-

ngs are supported by related work. In particular, Tahir and Mac-

onell (2012) also highlighted the frequent occurrence of cohesion,

oupling, complexity and maintainability. The importance of main-

E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77 67

t

c

s

i

i

a

t

u

a

t

m

t

t

t

p

t

f

t

t

s

e

i

a

t

q

a

d

t

t

k

K

r

r

m

m

i

t

a

o

(

v

t

t

B

p

i

t

p

i

a

i

n

t

s

c

i

c

5

p

a

t

t

a

m

i

t

t

i

a

o

c

t

t

s

(

w

a

g

t

t

c

a

a

p

o

g

o

w

i

c

t

v

o

B

t

o

r

t

b

r

i

i

c

u

e

t

k

f

u

d

5

t

p

s

t

t

c

7 This can be evident by the yearly report on the usage of programming lan-

guages, as published by TIOBE. See http://www.tiobe.com/tiobe _ index .
8 http://www.borland.com/en-GB/Products/Requirements-Management/Together .
9 http://www.sonarqube.org/ .
ainability is also emphasized by Jabangwe et al. (2004) , who fo-

used their SLR on maintainability and reliability.

By further focusing on the quantification of HL_QAs, our results

uggested that despite the fact that approximately 2 out of 3 stud-

es link metrics to HL_QA’s, only 1 out of 3 combines these metrics

n a single calculation formula. This outcome is expected since the

ccurate assessment of a QA through a single function is a non-

rivial task. In the majority of cases, researchers have suggested the

se of a weighted sum method (use of regression models) as an

ggregation function for combining metrics (Kitchenham, 2010). In

he literature, as already discussed by Riaz et al. (2009) , multiple

odels that assess software maintainability through a single func-

ion (i.e., 15 studies) have been introduced. Additionally, we note

hat our results concerning maintainability are in accordance with

hose of Jabangwe et al. (2004) , since both studies suggest that ap-

roximately 30% of primary studies use models to measure main-

ainability. We need to note that metric quantification through a

unction sometimes receives criticism from research communities

hat are in favor of investigating association/correlation of metrics

o QA.

In addition, a more fine-grained analysis of the used metrics

uggests that metrics, which quantify cohesion (e.g., LCOM1, TCC,

tc.), size (e.g., LOC, NOM), complexity (e.g., CC, Halstead n1, etc.),

nheritance (e.g., DIT and NOCC), and coupling (e.g., CBO, RFC, etc.)

re the most commonly employed for quantifying HL_QAs. By con-

rasting the results on the frequency of metrics to the frequency of

uality attributes, we can observe that the most popular metrics

re quantifying the most popular QAs. These results are in accor-

ance to Jabangwe et al. (2004) , who also underline the impor-

ance of these properties. Another interesting observation is that

he majority of the aforementioned metrics belong to two well-

nown metric suites, i.e., Li and Henry (1993) and Chidamber and

emerer metrics (1994) . This observation is also in accordance to

elated work, since Riaz et al. (2009) suggest that combining met-

ics of these two suites leads to optimal maintainability prediction

odels.

Finally, concerning the assessment of the relationship between

etrics and quality attributes, the results of this study suggest that

n 73% of the cases, an empirical validation is performed. Addi-

ionally, only 8% of the papers have performed both an empirical

nd theoretical validation, whereas only 2 papers have only a the-

retical approach. These results are in accordance to Kitchenham

2010) , who also acknowledge the higher frequency of empirical

alidation methods, however with a lower percentage (67%). Fur-

hermore, the results of Kitchenham (2010) suggest that 25% of

he papers perform both an empirical and theoretical evaluation.

y taking into account that the study of Kitchenham (2010) was

erformed on papers published before 2005, it is implied that dur-

ng the last decade empirical validation has gained ground against

heoretical validation, since more researchers are focusing on em-

irical validation, and skip the theoretical part. This phenomenon

s more general in the software engineering community, since the

wareness of software engineers with respect to empiricism has

ncreased during the last years (Sjøberg et al., 2007). However, we

ote that the higher numbers of empirical validation can be due

o the fact that replication of theoretical validation is not neces-

ary (i.e., if a metric is validated once there is no need to theoreti-

ally validate it again). On the other hand, replication of an empir-

cal study is very important in the empirical software engineering

ommunity.

.1.2. Application domains, development Phases, programming

aradigms, and tools

In accordance to the previously discussed findings, maintain-

bility is the most frequently studied QA regardless of the applica-

ion domain or software development phase. The only exceptions
o this are the early development phases (i.e., project management

nd requirements engineering) and some specific application do-

ains (e.g., enterprise and business applications, etc.). Concern-

ng the former, this finding is intuitive in the sense that during

hese phases software development teams pay more attention in

he business aspects of the software (e.g., functionality). Regard-

ng the latter, in domains such as information systems and web

pplications, the success of the software is related to the amount

f functionality that they provide to the user and its low learning

urve. Additionally, consistency and analysability are more impor-

ant for more critical application domains, such as embedded sys-

ems and business applications.

We observe that the majority of metrics is calculated at the

ource code level regardless of the targeted development phase

see Section 4.2.4). This result is in accordance to Riaz et al. (2009) ,

ho were able to identify only one study that assesses maintain-

bility using design-level metrics. The preference of software en-

ineering researchers in source code metrics can be attributed to

wo assumptions: (a) researchers are using detailed-design artifacts

hat are completely synchronized with the source code, or (b) they

alculate source code metrics in earlier development phases to get

n approximation of their values as early as possible, by trading-off

ccuracy with early quality assessment. Concerning programming

aradigms, the obtained results have indicated that the majority

f metrics are linked to the object-oriented or the functional pro-

ramming paradigm. This is an expected result in the sense that

bject-oriented and functional languages are dominating the soft-

are engineering domain. 7 In addition, in the literature, we have

dentified some studies that introduce programming paradigm spe-

ific metrics (e.g., as summarized by Abdellatief et al. (2013)), but

heir number is rather limited.

Finally, concerning metric calculation tools that have been de-

eloped in an academic environment, we have observed that 25%

f published papers use tools for introducing or evaluating metrics.

y comparing the list of metrics that are most frequently used and

he lists of metrics that are calculated by tools (as introduced in

ur primary studies dataset), we observe that object-oriented met-

ics (e.g., LCOM1, NOCC, CBO, etc.) are calculated by at least 3 iden-

ified tools, whereas older metrics, e.g. Halstead n1, n2, etc., have

een associated with only one tool (i.e., Fortranal). In particular,

egarding LCOM1, five studies have developed their own tools for

ts calculation, one study used open-source software, and six stud-

es used six different tools developed by others. Therefore, LCOM1

an be calculated by 12 distinct tools. Nevertheless, we need to

nderline that the list of tools mentioned in this manuscript is not

xhaustive, since it only includes tools that have been used for in-

roducing or validating metrics in the literature. Therefore, well-

nown tools, e.g., Borland Together, 8 SonarQube, 9 etc., are missing

rom this list, since despite their popularity, they have not been

sed for research purposes. This would require a separate survey

edicated to identifying tools.

.2. Synthesis and applicability of the results

In this section, we present a synthesized view of the ob-

ained results through an illustrative example. In particular, we

rovide an overview of the steps that would be followed by a re-

earcher/practitioner to select the most fitting metrics for assessing

he quality of software in the maintenance phase of an application

hat is classified as a generic one (i.e., does not belong to a spe-

ific application domain). We note that the purpose of this exam-

http://www.tiobe.com/tiobe_index
http://www.borland.com/en-GB/Products/Requirements-Management/Together
http://www.sonarqube.org/

68 E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77

t

5

p

t

i

t

r

v

t

c

b

6

o

ple is not necessarily to directly provide suggestions to researchers

/ practitioners in metrics selection (since it is a very specific one),

but to act as guidance on how to apply the quality assurance /

metrics selection process described in Section 1 .

In the aforementioned example, the researcher/practitioner

would first need to select the quality attributes that he/she wants

to focus on (i.e., answering RQ 1 - Which quality attributes should

be considered in software development, based on the application

domain of the project and the current development phase?). To an-

swer this question, a synthesized view of the results of Table 5 (see

Section 4.1.1) and Table 6 (see Section 4.1.2) is required. By cross

tabulating the results of the two tables we obtain a matrix, as pre-

sented in Fig. 4 . To avoid the complexity of such a representation,

we mapped two of the dimensions (i.e., application domain and

quality attribute) in the horizontal axis of the matrix (i.e., rows),

using a nesting. Therefore, using the first two columns we present

the most important QAs for each application domain. Then, us-

ing the remaining columns, we highlight which QA is important in

each development phase. Thus, for the case of the aforementioned

example, the red rectangle denotes that the quality attributes that

are the most interesting ones in the maintenance phase of applica-

tions are maintainability , stability , and changeability . The rest of

this example focuses on these QAs.

In Fig. 5 , we simulate the process through which the interested

researcher/practitioner can select metrics for maintainability, sta-

bility, and changeability. The matrix has been obtained by cross

tabulating the results of all tables presented in Section 4.2 that aim

to answer RQ 2 (i.e., How can we effectively use quality metrics for

assessing/quantifying a specific quality attribute?). The rows of the

table represent a subset of candidate metrics that can potentially

be selected. The presented metrics are a subset of all candidate

ones, since in the matrix we have considered only the most fre-

quent ones for each quality attribute. The columns are organized

in groups, based on QAs (i.e., we have three groups of columns,

one for each QA: maintainability, stability, and changeability). For

every group, we have four sub-columns:

• Association denotes if the specific metric is linked to the QA.
• Dev. Phase denotes if the specific metric can be calculated from

the artifacts of the corresponding development phase.
• Level of Evidence highlights if the relationship between the

specific metric and QA has been empirically validated, and at

what level of evidence.
• Tool suggests if the specific metric can be automatically calcu-

lated by a tool.
• Based on the above and by assuming that the quality assess-

ment team is interested in selecting as few metrics as possi-

ble, the selection of three metrics is implied by the results of

Fig. 5 . In particular, Lines of Code (LoC) and Weighted Meth-

ods per Class (WMC) can be used for assessing maintainability

and stability with level of evidence 4 and 3, respectively. Con-

cerning changeability, the team is prompted to use Change Size

(CS) , with a level of evidence 3. At this point, we need to note

that if a quality assessment team is willing to trade-off the low

number of selected metrics with a higher level of evidence, the

selection would be different. In particular, more metrics would

be added to the matrix, based on Table 9 (see Section 4.2.2).

5.3. Implications for researchers and practitioners

In this section, we discuss the main implications of this study

for researchers and practitioners. On the one hand, concerning

researchers , we have identified some interesting future work di-

rections, and some recommendations for the metric introduc-

tion/definition process, as follows:
• Quality attributes in need of quantification methods . The re-

sults of this study have unveiled some quality attributes that

lack quantification (e.g., change proneness, modularity, main-

tainability, and stability). Therefore, we suggest researchers to

not only associate metrics with these quality attributes, but also

develop predictive models that can be used for their quantifi-

cation.
• Quality-driven research in some application domains . Based

on the findings presented in Table 5 , we have identified that

some application domains are more focused on specific quality

attributes than others (e.g., business applications on functional-

ity, embedded systems on correctness, etc.). Thus, we advise re-

searchers interested in these application domains, to focus their

research efforts on proposing approaches that safeguard these

quality attributes.
• Quality assurance in different development phases . Concern-

ing development phases, the results are two-fold: (a) research

on some development phases (e.g., requirements engineering

and architecture) is not focused on specific quality attributes;

and (b) research on some development phases (e.g., architec-

ture) are reusing metrics calculated from artifacts developed in

other phases (e.g., source code) and thus, lack phase-specific

metrics. To this end, we highlight the need of introducing met-

rics that are calculated at the architecting phase, and that quan-

tify requirements-related QAs, e.g. traceability.
• Validation of introduced metrics . Despite the fact that dur-

ing the last years the empirical validation of metrics has in-

creased, current state-of-research lacks metrics that are vali-

dated in both an empirical and a theoretical manner. There-

fore, we advise researchers to both mathematically (for those

that lack theoretical validation in the past) and empirically vali-

date metrics. Thus, researchers should first assure that the pro-

posed metrics hold some basic metrics properties (e.g., those

proposed by Briand et al. (1999)), and then investigate their fit-

ness for the quantification of the targeted QA, following well-

known methods (e.g., IEEE Standard for a Software Quality Met-

rics Methodology (1998)).
• Investigation of the quality evaluation/assessment of metrics .

An interesting future research topic that has emerged by an-

alyzing the corpus of primary studies is the thorough inves-

tigation of the quality of studies that explore the relationship

between metrics and quality attributes. This study should be

performed as an SLR (not as a mapping study—as this work is

designed) and could potentially explore: (a) all types of vali-

dation per metric, (b) whether validation exercises are prop-

erly carried out, and (c) linking of papers (introduction and

validation).

On the other hand, concerning practitioners , we aim at aiding

he quality assurance process (an example is provided in Section

.2). First, based on the application domain and the development

hase that they are interested, they can identify quality attributes

hat are more frequently studied. Next, based on the selected qual-

ty attributes, they can exploit the results of Table 9 to proceed in

heir metric selection process. In addition to that, they can nar-

ow down the vast list of metrics by focusing on metrics that are

alidated at the highest possible level (see Table 11). Finally, to au-

omate the process of metrics collection, they can consult the ac-

ompanying technical report, 3 to explore the list of tools that can

e used for their quantification.

. Threats to validity

In this section, we present the threats to validity that concern

ur mapping study.

E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77 69

Fig. 4. QA selection based on development phase and application domain .

p

l

R

n

t

a

a

e

i

s

p

p

u
First, we discuss threats to validity that can lead to errors in the

rimary study identification process (e.g., the selection of digital

ibraries and search string construction, and study selection bias).

etrieving primary studies from selected publication venues and

ot by searching in digital libraries, might lead to missing studies

hat are published in other venues. However, as stated before, the

im of the study is to collect high-quality studies only. One way to
chieve this goal is to limit the search to top venues (Kitchenham

t al. 2009b) and (Kitchenham et al., 2010). In addition to that, lim-

ting the searching space of the mapping study has not lead to a

ignificant decrease of primary studies, because through the search

rocess we have been able to identify more than 2800 candidate

rimary studies. In addition to that, the small number of keywords

sed as a search string, may also lead to missing high-quality stud-

70 E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77

Fig. 5. Metric selection for the important quality attributes.

t

s

e

t

l

l

C

w

q

s

t

n

t

b

p

a

p

c

b

s

A

ies whose authors have not used common terms for quality and

quality-related concepts (quality attributes, quality metrics), or did

not use keywords that we would have assumed in the full text of

papers. However, we believe that it is highly unlikely for authors

not having used the corresponding terms, i.e. “quality attribute” OR

“quality characteristic” OR “quality metric” OR “software metric”

OR “software measurement” OR “quality requirement” OR “quality

framework” OR “non-functional requirement” OR “non-functional

requirement”, in the full text of papers that introduce and evaluate

quality attributes and metrics.

Second, two authors performed data collection and analysis.

One checking the results of the other reduces the possibility of

data collection inaccuracies. Also, concerning data synthesis, fre-

quency analysis and cross-tabulation are objective methods less

prone to researcher bias. Although, primary studies come from

specific venues, we believe that no publication bias exists. The

communities that publish in the selected venues cover the whole

spectrum of software engineering research.

Finally, concerning repeatability, we believe that this study can

be easily replicated by different researchers, since: (a) the mapping

study protocol is extensively described in this paper, and (b) there

was only limited subjective judgement involved in the data collec-

tion and analysis phases.

7. Conclusions

This study aimed at providing a detailed panorama of the state-

of-the-art on design time quality attributes and metrics to assess
Name

IEEE Transactions on Software Engineering

International Conference on Software Engineering

IEEE Software

Software: Practice and Experience

ACM Transactions on Software Engineering and Methodology

Journal of Systems and Software

Information and Software Technology

European Software Engineering Conference and the ACM SIGSOFT International Sympos

Foundations of Software Engineering

Automated Software Engineering Conference

Empirical Software Engineering
hem. To achieve this goal, we performed a systematic mapping

tudy and investigated studies that are published in top software

ngineering venues. The results of the study suggest that main-

ainability is the most commonly studied quality attribute, regard-

ess of the application domain or the development phase. High-

evel quality attributes are most commonly assessed through the

hidamber and Kemerer (1994) and Li and Henry (1993) metrics,

ithout however, an established way of aggregating them in one

uality attribute metric score.

The results reported in this study can be useful to both re-

earchers and practitioners. On the one hand, researchers can iden-

ify useful research directions (e.g., which quality attributes have

ot been associated with metrics, yet) and get guidance on how

o holistically evaluate metrics that they propose, by performing

oth an empirical and theoretical validation. On the other hand,

ractitioners can benefit from this study in their quality assur-

nce planning and their metric selection process. Specifically, we

rovide a list of the most important quality attributes in spe-

ific application domains and development phases, accompanied

y the most popular and thoroughly validated metrics for each

cenario.

ppendix A. Publication venues
cr.1 cr.2 cr.3 cr.4 Included

A Yes Yes 183 Yes

A Yes Yes 118 Yes

B Yes Yes 108 Yes

A Yes Yes 80 Yes

A Yes Yes 69 Yes

A Yes Yes 61 Yes

B Yes Yes 46 Yes

ium on the A Yes Yes 44 Yes

A Yes Yes 44 Yes

A Yes Yes 36 Yes

(continued on next page)

E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77 71

(continued)

Name cr.1 cr.2 cr.3 cr.4 Included

International Conference on Software Process A Yes Yes 23 Yes

International Symposium on Empirical Software Engineering and Measurement A Yes Yes 21 Yes

ACM Computing Surveys A No No

ACM Transactions on Architecture and Code Optimization A Yes No No

ACM Transactions on Computer Systems A No No

ACM Transactions on Design Automation of Electronic Systems A No No

ACM Transactions on Embedded Computing Systems A No No

ACM Transactions on Information and System Security A Yes No No

ACM Transactions on Multimedia Computing Communications and Applications B Yes No No

ACM Transactions on Programming Languages and Systems A Yes No No

Acta Informatica A Yes Yes N/A No

Computer Standards and Interfaces B No No

Computers and Electrical Engineering B No No

Computers and Security B Yes No No

Computers in Industry B No No

IBM Journal of Research and Development A No No

IBM Systems Journal A No No

IEEE Transactions on Computers A No No

IEEE Transactions on Dependable and Secure Computing A No No

IEEE Transactions on Multimedia A Yes No no

IEEE Transactions on Reliability A Yes No No

IET Computers and Digital Techniques B No No

Industrial Management + Data Systems B No No

Innovations in Teaching and Learning in Information and Computer Sciences B No No

International Journal of Agent Oriented Software Engineering B Yes No No

International Journal on Software Tools for Technology Transfer B Yes No No

Journal of Computer Security B No no

Journal of Functional and Logic Programming B Yes No No

Journal of Object Technology B Yes No No

Journal of Software B Yes Yes N/A No

Journal of Software Maintenance and Evolution: research and practice B Yes No No

Journal of Systems Architecture B Yes No No

Journal of Visual Languages and Computing A Yes No No

Multimedia Systems B Yes No No

Multimedia Tools and Applications B Yes No No

Requirements Engineering B Yes No No

Science of Computer Programming A Yes No No

Software and System Modelling B Yes No No

Software Testing, Verification and Reliability B Yes No No

Text Technology: the journal of computer text processing B No No

Theory and Practice of Logic Programming A Yes No No

ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication A No No

ACM Conference on Computer and Communications Security A No No

ACM Conference on Object Oriented Programming Systems Languages and Applications A Yes No No

ACM International Symposium on Computer Architecture A Yes No No

ACM Multimedia A No No

ACM SIGOPS Symposium on Operating Systems Principles A No No No

ACM/IFIP/USENIX International Middleware Conference A No No

ACM-SIGACT Symposium on Principles of Programming Languages A Yes No No

ACM-SIGPLAN Conference on Programming Language Design and Implementation A Yes No No

Annual Computer Security Applications Conference A Yes No No

Architectural Support for Programming Languages and Operating Systems A Yes No No

Aspect-Oriented Software Development A Yes No No

Conference on the Quality of Software Architectures A Yes No No

European Conference on Object-Oriented Programming A Yes No No

European Symposium on Programming A Yes No No

European Symposium On Research In Computer Security A Yes No No

Eurosys Conference A Yes No No

IEEE Computational Systems Bioinformatics Conference A No No

IEEE Computer Security Foundations Symposium A Yes No No

IEEE International Conference on Software Maintenance A Yes No No

IEEE International Requirements Engineering Conference A Yes No No

IEEE/IFIP International Conference on Dependable Systems A Yes No No

IEEE/IFIP International Symposium on Trusted Computing and Communications A No No

IEEE/IFIP Working Conference on Software Architecture A Yes No No

IFIP Joint International Conference on Formal Description Techniques and Protocol Specification, Testing,

And Verification

A Yes No No

Intelligent Systems in Molecular Biology A No No

International Conference on Compiler Construction A Yes No No

International Conference on Coordination Models and Languages A Yes No No

International Conference on Evaluation and Assessment in Software Engineering A Yes Yes N/A No

International Conference on Functional Programming A Yes No No

International Conference on Principles and Practice of Constraint Programming A Yes No No

International Conference on Reliable Software Technologies A Yes No No

(continued on next page)

72 E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77

(continued)

Name cr.1 cr.2 cr.3 cr.4 Included

International Conference on Security and Privacy for Communication Networks A No No

International Conference on Software Reuse A Yes No No

International Conference on Virtual Execution Environments A No No

International Symposium Component-Based Software Engineering A Yes No No

International Symposium on Automated Technology for Verification and Analysis A Yes No No

International Symposium on Code Generation and Optimization A Yes No No

International Symposium on High Performance Computer Architecture A Yes No No

International Symposium on Memory Management A Yes No No

International Symposium on Software Reliability Engineering A Yes No No

International Symposium on Software Testing and Analysis A Yes No No

Tools and Algorithms for Construction and Analysis of Systems A Yes No No

Usenix Network and Distributed System Security Symposium A Yes No No

Usenix Security Symposium A Yes No No

Usenix Symposium on Operating Systems Design and Implementation A No No

USENIX Workshop on Hot Topics in Operating Systems A No No

t

(

9

2

m

4

a

(

1

c

7

b

s

o

P

p

9

m

–

C

p

A

t

r

i

f

o

Appendix B. Primary studies

Abrahao, S. and Poels, G. “A family of experiments to evaluate

a functional size measurement procedure for Web applications”,

(82:2), 2009, pp. 253 – 269.

Adamov, R. and Richter, L. “A proposal for measuring the struc-

tural complexity of programs”, (12:1), 1990, pp. 55 – 70.

Albuquerque, D., Cafeo, B., Garcia, A., Barbosa, S., Abrahão, S.

and Ribeiro, A. “Quantifying usability of domain-specific languages:

An empirical study on software maintenance”, (101:3), 2015, pp.

245–259.

Al Dallal, J. “Incorporating transitive relations in low-level

design-based class cohesion measurement”, (43:6), 2013, pp. 685–

704.

Al Dallal, J. “Object-oriented class maintainability prediction us-

ing internal quality attributes”, (55:11), 2013, pp. 2028 – 2048.

Al Dallal, J. “Improving the applicability of object-oriented class

cohesion metrics”, (53:9), 2011, pp. 914 – 928.

Al Dallal, J. “Measuring the Discriminative Power of Object-

Oriented Class Cohesion Metrics”, (37:6), 2011, pp. 788 – 804.

Al Dallal, J. and Briand, L. C. “A Precise Method-Method

Interaction-Based Cohesion Metric for Object-Oriented Classes”,

(21:2), 2012, Article 8.

Al Dallal, J. and Briand, L. C. “An object-oriented high-level

design-based class cohesion metric”, (52:12), 2010, pp. 1346 –

1361.

Alshayeb, M. and Li, W. “An empirical study of system design

instability metric and design evolution in an agile software pro-

cess”, (74:3), 2005, pp. 269 – 274.

Alshayeb, M. and Li, W. “An empirical validation of object-

oriented metrics in two different iterative software processes”,

(29:11), 2003, pp. 1043 – 1049.

Aranha, E. and Borba, P. “An Estimation Model for Test Execu-

tion Effort”, 2007, pp. 107 – 116.

Arisholm, E. “Empirical assessment of the impact of struc-

tural properties on the changeability of object-oriented software”,

(48:11), 2006, pp. 1046 – 1055.

Arisholm, E. and Sjoberg, D. I. K. “Towards a framework for em-

pirical assessment of changeability decay”, (53:1), 20 0 0, pp. 3 –

14.

Athanasiou D., Nugroho, A., Visser, J. and Zaidman A. “Test Code

Quality and Its Relation to Issue Handling Performance”, (40:11),

2014, pp. 1100 – 1125.

Baker, A. and Zweben, S. “A Comparison of Measures of Control

Flow Complexity”, (SE-6:6), 1980, pp. 506 – 512.

Baudry, B. and Traon, Y. L. “Measuring design testability of a

UML class diagram”, (47:13), 2005, pp. 859 – 879.
s

Bavota, G., Lucia, A. D., Marcus, A. and Oliveto, R. “Using struc-

ural and semantic measures to improve software modularization”,

18:5), 2013, pp. 901 – 932.

Behkamal, B., Kahani, M. and Akbari, M. K. “Customizing ISO

126 quality model for evaluation of B2B applications”, (51:3),

009, pp. 599 – 609.

Berenbach, B. and Borotto, G. “Metrics for model driven require-

ents development”, ACM, New York, NY, USA, 2006, pp. 445 –

51.

Bertoa, M. F., Troya, J. M. and Vallecillo, A. “Measuring the us-

bility of software components”, (79:3), 2006, pp. 427 – 439.

Bieman, J. and Kang, B. K. “Measuring design-level cohesion”,

24:2), 1998, pp. 111 – 124.

Bieman, J. and Ott, L. “Measuring functional cohesion”, (20:8),

994, pp. 644 – 657.

Black, S. “Deriving an approximation algorithm for automatic

omputation of ripple effect measures”, (50:7–8), 2008, pp. 723 –

36.

Blaine, J. and Kemmerer, R. A. “Complexity measures for assem-

ly language programs”, (5:3), 1985, pp. 229 – 245.

Bourque, P. and Cote, V. “An experiment in software sizing with

tructured analysis metrics”, (15:2), 1991, pp. 159 - 172.

Bouwers, E., Deursen, A. v. and Visser, J. “Evaluating usefulness

f software metrics: an industrial experience report”, IEEE Press,

iscataway, NJ, USA, 2013, pp. 921–930.

Briand, L., Daly, J. and Wust, J. “A unified framework for cou-

ling measurement in object-oriented systems”, (25:1), 1999, pp.

1 – 121.

Briand, L., Morasca, S. and Basili, V. “Defining and validating

easures for object-based high-level design”, (25:5), 1999, pp. 722

743.

Briand, L. C., Daly, J. W. and Wüst, J. “A Unified Framework for

ohesion Measurement in Object-Oriented Systems”, (3:1), 1998,

p. 65 – 117.

Breno, M. “A proposal for revisiting coverage testing metrics”,

CM, New York, NY, USA, 2014, pp. 899–902.

Bruntink, M. and van Deursen, A. “An empirical study into class

estability”, (79:9), 2006, pp. 1219 – 1232.

Calero, C., Piattini, M. and Genero, M. “Empirical validation of

eferential integrity metrics”, (43:15), 2001, pp. 949 – 957.

Card, D. and Agresti, W. “Measuring software design complex-

ty”, (8:3), 1988, pp. 185 – 197.

Cazzola, W. and Marchetto, A. “A concern-oriented framework

or dynamic measurements”, (57: 1), 2015, pp. 32 – 51.

Chae, H. S., Kwon, Y. R. and Bae, D. H. “A cohesion measure for

bject-oriented classes”, (30:12), 20 0 0, pp. 1405 – 1431.

Chen, J.-Y. and Lu, J.-F. “A new metric for object-oriented de-

ign”, (35:4), 1993, pp. 232 – 240.

E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77 73

o

6

e

1

s

(

r

m

c

2

i

c

2

p

s

p

t

o

S

s

(

I

t

s

P

M

i

3

F

f

q

6

w

1

A

m

c

R

a

2

p

v

“

m

a

C

s

n

h

U

M

4

m

o

t

(

u

p

i

c

e

I

f

e

s

2

e

2

a

7

s

M

s

7

p

9

p

r

l

c

(

Chhabra, J. K., Aggarwal, K. and Singh, Y. “Measurement of

bject-oriented software spatial complexity”, (46:10), 2004, pp.

89 – 699.

Chidamber, S. and Kemerer, C. “A metrics suite for object ori-

nted design”, (20:6), 1994, pp. 476 – 493.

Cioch, F. A. “Measuring software misinterpretation”, (14:2),

991, pp. 85 - 95.

Coleman, D., Lowther, B. and Oman, P. “The application of

oftware maintainability models in industrial software systems”,

29:1), 1995, pp. 3 – 16.

Conejero, J. M., Figueiredo, E., Garcia, A., Hernandez, J. and Ju-

ado, E. “On the relationship of concern metrics and requirements

aintainability”, (54:2), 2012, pp. 212 – 238.

Coskun, E. and Grabowski, M. “An interdisciplinary model of

omplexity in embedded intelligent real-time systems”, (43:9),

001, pp. 527 - 537.

Costello, R. J. and Liu, D.-B. “Metrics for requirements engineer-

ng”, (29:1), 1995, pp. 39 – 63.

Dantas, F., Garcia, A. and Whittle, J. “On the role of composition

ode properties on evolving programs”, ACM, New York, NY, USA,

012, pp. 291–300.

Davis, J. and LeBlanc, R. “A study of the applicability of com-

lexity measures”, (14:9), 1988, pp. 1366 – 1372.

Dhama, H. “Quantitative models of cohesion and coupling in

oftware”, (29:1), 1995, pp. 65 – 74.

Dromey, R. “A model for software product quality”, (21:2), 1995,

p. 146 - 162.

Durisic, D., Nilsson, M., Staron, M. and Hansson, J. “Measuring

he impact of changes to the complexity and coupling properties

f automotive software systems”, (86:5), 2013, pp. 1275 – 1293.

Edagawa, T., Akaike, T., Higo, Y., Kusumoto, S., Hanabusa, S. and

hibamoto, T. “Function point measurement from Web application

ource code based on screen transitions and database accesses”,

84:6), 2011, pp. 976 – 984.

Emam, K. E. and Jung, H.-W. “An empirical evaluation of the

SO/IEC 15504 assessment model”, (59:1), 2001, pp. 23 – 41.

Emam, K. E. and Madhavji, N. H. “An instrument for measuring

he success of the requirements engineering process in information

ystems development”, (1:3), 1996, pp. 201 – 240.

Emerson, T. J. “A discriminant metric for module cohesion”, IEEE

ress, Piscataway, NJ, USA, 1984, pp. 294 – 303.

English, M., Buckley, J. and Cahill, T. “Fine-Grained Software

etrics in Practice”, 2007, pp. 295 – 304.

Etzkorn, L., Hughes Jr., W. and Davis, C. “Automated reusabil-

ty quality analysis of OO legacy software”, (43:5), 2001, pp. 295 –

08.

Etzkorn, L. H., Gholston, S. E., Fortune, J. L., Stein, C. E., Utley, D.,

arrington, P. A. and Cox, G. W. “A comparison of cohesion metrics

or object-oriented systems”, (46:10), 2004, pp. 677 – 687.

Farbey, B. “Software quality metrics: considerations about re-

uirements and requirement specifications”, (32:1), 1990, pp. 60 –

4.

Feigenspan, J., Apel, S., Liebig, J. and Kastner, C. “Exploring Soft-

are Measures to Assess Program Comprehension”, 2011, pp. 127 –

36.

Ferreira, K. A., Bigonha, M. A., Bigonha, R. S., Mendes, L. F. and

lmeida, H. C. “Identifying thresholds for object-oriented software

etrics”, (85:2), 2012, pp. 244 - 257.

Ferrer, J., Chicano, F. and Alba, E. “Estimating software testing

omplexity”, (55:12), 2013, pp. 2125 – 2139.

Fernández-Sáez, A. M., Genero, M., Caivano, D. and Chaudron, M.

. V. “Does the level of detail of UML diagrams affect the maintain-

bility of source code? A family of experiments”, (21:1), 2014, pp.

12–259.

Franch, X. and Carvallo, J. “Using quality models in software

ackage selection”, (20:1), 2003, pp. 34 – 41.
Gencel, C. and Demirors, O. “Functional size measurement re-

isited”, (17:3), 2008, pp. 15:1 вЂ“15:36.

Genero, M., Manso, E., Visaggio, A., Canfora, G. and Piattini, M.

Building measure-based prediction models for UML class diagram

aintainability”, (12:5), 2007, pp. 517 – 549.

Gold, N., Mohan, A. and Layzell, P. “Spatial complexity metrics:

n investigation of utility”, (31:3), 2005, pp. 203 – 212.

Gordon, R. “A Qualitative Justification for a Measure of Program

larity”, (SE-5:2), 1979, pp. 121 – 128.

Grosser, D., Sahraoui, H. and Valtchev, P. “Predicting software

tability using case-based reasoning”, 2002, pp. 295 - 298.

Gui, G. and Scott, P. D. “Ranking reusability of software compo-

ents using coupling metrics”, (80:9), 2007, pp. 1450 – 1459.

Han, A.-R., Jeon, S.-U., Bae, D.-H. and Hong, J.-E. “Measuring be-

avioral dependency for improving change-proneness prediction in

ML-based design models”, (83:2), 2010, pp. 222 - 234.

Harrison, R., Counsell, S. and Nithi, R. “An evaluation of the

OOD set of object-oriented software metrics”, (24:6), 1998, pp.

91 – 496.

Harrison, R., Counsell, S. and Nithi, R. “Experimental assess-

ent of the effect of inheritance on the maintainability of object-

riented systems”, (52:2–3), 20 0 0, pp. 173 - 179.

Harrison, R., Counsell, S. J. and Nithi, R. V. “An Investigation into

he Applicability and Validity of Object-Oriented Design Metrics”,

3:3), 1998, pp. 255 – 273.

Harrison, R., Samaraweera, L., Dobie, M. and Lewis, P. “An eval-

ation of code metrics for object-oriented programs”, (38:7), 1996,

p. 443 – 450.

Harrison, W. “An entropy-based measure of software complex-

ty”, (18:11), 1992, pp. 1025 - 1029.

He, L. and Carver, J. “Modifiability measurement from a task

omplexity perspective: A feasibility study”, IEEE Computer Soci-

ty, Washington, DC, USA, 2009, pp. 430 – 434.

Henry, S. and Kafura, D. “Software Structure Metrics Based on

nformation Flow”, (SE-7:5), 1981, pp. 510 – 518.

Her, J. S., Kim, J. H., Oh, S. H., Rhew, S. Y. and Kim, S. D. “A

ramework for evaluating reusability of core asset in product line

ngineering”, (49:7), 2007, pp. 740 - 760.

Hitz, M. and Montazeri, B. “Chidamber and Kemerer’s metrics

uite: a measurement theory perspective”, (22:4), 1996, pp. 267 -

71.

Hordijk, W. and Wieringa, R. “Surveying the factors that influ-

nce maintainability: research design”, ACM, New York, NY, USA,

005, pp. 385 - 388.

Horgan, G. and Khaddaj, S. “Use of an adaptable quality model

pproach in a production support environment”, (82:4), 2009, pp.

30 - 738.

Huang, S. and Lai, R. “On measuring the complexity of an estelle

pecification”, (40:2), 1998, pp. 165 - 181.

Jensen, H. and Vairavan, K. “An Experimental Study of Software

etrics for Real-Time Software”, (SE-11:2), 1985, pp. 231 - 234.

Jilani, L., Desharnais, J. and Mili, A. “Defining and applying mea-

ures of distance between specifications”, (27:8), 2001, pp. 673 -

03.

Jung, H.-W., Kim, S.-G. and Chung, C.-s. “Measuring software

roduct quality: a survey of ISO/IEC 9126”, (21:5), 2004, pp. 88 -

2.

Jung, H.-W., Pivka, M. and Kim, J.-Y. “An empirical study of com-

lexity metrics in Cobol programs”, (51:2), 20 0 0, pp. 111 - 118.

Kafura, D. and Reddy, G. “The Use of Software Complexity Met-

ics in Software Maintenance”, (SE-13:3), 1987, pp. 335 - 343.

Kakarontzas, G., Constantinou, E., Ampatzoglou, A. and Stame-

os, I. “Layer assessment of object-oriented software: A metric fa-

ilitating white-box reuse”, (86:2), 2013, pp. 349 - 366.

Kesh, S. “Evaluating the quality of entity relationship models”,

37:12), 1995, pp. 681 - 689.

74 E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77

o

p

M

a

5

t

2

b

f

f

S

t

t

s

(

i

(

“

p

2

a

p

(

w

r

c

c

T

i

a

i

U

s

g

f

2

m

m

N

f

m

Khoshgoftaar, T., Munson, J., Bhattacharya, B. and Richardson, G.

“Predictive modelling techniques of software quality from software

measures”, (18:11), 1992, pp. 979 - 987.

Koru, A. and Tian, J. “Comparing high-change modules and

modules with the highest measurement values in two large-scale

open-source products”, (31:8), 2005, pp. 625 - 642. van Koten, C.

and Gray, A. “An application of Bayesian network for predicting

object-oriented software maintainability”, (48:1), 2006, pp. 59 - 67.

van Vliet, H. “Software Engineering: Principles and Practice (3rd

Edition)”, Wiley, Chichester, England, 1993.

Kumar Chhabra, J., Aggarwal, K. and Singh, Y. “Code and data

spatial complexity: two important software understandability mea-

sures”, (45:8), 2003, pp. 539 - 546.

Kusumoto, S., Imagawa, M., Inoue, K., Morimoto, S., Matsusita, K.

and Tsuda, M. “Function point measurement from Java programs”,

ACM, New York, NY, USA, 2002, pp. 576 вЂ“582.

Li, H. F. and Cheung, W. K. “An Empirical Study of Software Met-

rics”, (SE-13:6), 1987, pp. 697 - 708.

Li, W. “Another metric suite for object-oriented programming”,

(44:2), 1998, pp. 155 - 162.

Li, W., Etzkorn, L., Davis, C. and Talburt, J. “An empirical study

of object-oriented system evolution”, (42:6), 20 0 0, pp. 373 - 381.

Li, W. and Henry, S. “Object-oriented metrics that predict main-

tainability”, (23:2), 1993, pp. 111 - 122.

Lindvall, M., Tvedt, R. T. and Costa, P. “An Empirically-Based Pro-

cess for Software Architecture Evaluation”, (8:1), 2003, pp. 83 -

108.

Loconsole, A. “Empirical Studies on Requirement Management

Measures”, IEEE Computer Society, Washington, DC, USA, 2004, pp.

42 - 44.

Lohse, J. B. and Zweben, S. H. “Experimental evaluation of soft-

ware design principles: An investigation into the effect of module

coupling on system modifiability”, (4:4), 1984, pp. 301 - 308.

Losavio, F., Chirinos, L., Matteo, A., Levy, N. and Ramdane-Cherif,

A. “ISO quality standards for measuring architectures”, (72:2),

2004, pp. 209 - 223.

Lu, H., Zhou, Y., Xu, B., Leung, H. and Chen, L. “The ability

of object-oriented metrics to predict change-proneness: a meta-

analysis”, (17:3), 2012, pp. 200 - 242.

Ma, Y., Jin, B. and Feng, Y. “Semantic oriented ontology cohesion

metrics for ontology-based systems”, (83:1), 2010, pp. 143 - 152.

Mahmood, S. and Lai, R. “A complexity measure for UML

component-based system specification”, (38:2), 2008, pp. 117 -

134.

Masoud, H. and Jalili, S. “A clustering-based model for class

responsibility assignment problem in object-oriented analysis”,

(93:7), 2014, pp. 110 - 131.

McCabe, T. “A Complexity Measure”, (SE-2:4), 1976, pp. 308 -

320.

Mendes, E., Harrison, R. and Hall, W. “Reusability and maintain-

ability in hypermedia applications for education”, (40:14), 1998,

pp. 841 - 849.

Moores, T. T. “Applying complexity measures to rule-based pro-

log programs”, (44:1), 1998, pp. 45 - 52.

Mouchawrab, S., Briand, L. C. and Labiche, Y. “A measurement

framework for object-oriented software testability”, (47:15), 2005,

pp. 979 - 997.

Munoz, F., Baudry, B., Delamare, R. and Le Traon, Y. “Usage and

testability of AOP: An empirical study of AspectJ”, (55:2), 2013, pp.

252 - 266.

Munson, J. C. and Kohshgoftaar, T. M. “Measurement of data

structure complexity”, (20:3), 1993, pp. 217 - 225.

N. Robillard, P. and Boloix, G. “The interconnectivity metrics: A

new metric showing how a program is organized”, (10:1), 1989, pp.

29 - 39.
Nesi, P. and Campanai, M. “Metric framework for object-

riented real-time systems specification languages”, (34:1), 1996,

p. 43 - 65.

O’ Cinneide, M., Tratt, L., Harman, M., Counsell, S. and Hemati

oghadam, I. “Experimental assessment of software metrics using

utomated refactoring”, ACM, New York, NY, USA, 2012, pp. 49 -

8.

Ormandjieva, O., Alagar, V. and Zheng, M. “Early quality moni-

oring in the development of real-time reactive systems”, (81:10),

008, pp. 1738 - 1753.

Orme, A., Tao, H. and Etzkorn, L. “Coupling metrics for ontology-

ased system”, (23:2), 2006, pp. 102 - 108.

Ott, L. M. and Bieman, J. M. “Program slices as an abstraction

or cohesion measurement”, (40:11–12), 1998, pp. 691 - 699.

Perepletchikov, M. and Ryan, C. “A Controlled Experiment

or Evaluating the Impact of Coupling on the Maintainability of

ervice-Oriented Software”, (37:4), 2011, pp. 449 - 465.

Perez-Palacin, D., Mirandola, R. and Merseguer, J. “On the rela-

ionships between QoS and software adaptability at the architec-

ural level”, (87:1), 2014, pp. 1 - 17.

Pickard, M. M. and Carter, B. D. “A field study of the relation-

hip of information flow and maintainability of COBOL programs”,

37:4), 1995, pp. 195 - 202.

Poshyvanyk, D., Marcus, A., Ferenc, R. and Gyim �³thy, T. “Using

nformation retrieval based coupling measures for impact analysis”,

14:1), 2009, pp. 5 - 32.

Qu, Y., Guan, X., Zheng, Q., Liu, T., Wang, L., Hou, Y. and Yang, Z.

Exploring community structure of software Call Graph and its ap-

lications in class cohesion measurement”, (108:10), 2015, pp. 193–

10.

Rama, G., M. and Kak A. “Some structural measures of API us-

bility”, (45:1), 2015, pp. 75 - 110.

Reynolds, R. G. “Metrics to measure the complexity of partial

rograms”, (4:1), 1984, pp. 75 - 91.

Rising, L. S. and Calliss, F. W. “An information-hiding metric”,

26:3), 1994, pp. 211 - 220.

Rombach, H. “A Controlled Experiment on the Impact of Soft-

are Structure on Maintainability”, (SE-13:3), 1987, pp. 344 - 354.

Samson, W., Nevill, D. and Dugard, P. “Predictive software met-

ics based on a formal specification”, (29:5), 1987, pp. 242 - 248.

Sarkar, S., Maskeri, G. and Ramachandran, S. “Discovery of ar-

hitectural layers and measurement of layering violations in source

ode”, (82:11), 2009, pp. 1891 - 1905.

Sarkar, S., Rama, G. and Kak, A. “API-Based and Information-

heoretic Metrics for Measuring the Quality of Software Modular-

zation”, (33:1), 2007, pp. 14 - 32.

Scheller, T. and Kühn, E. “Automated measurement of API us-

bility: The API Concepts Framework”, (61:5), 2015, pp. 145 – 162.

Schwanke, R., Xiao, L. and Cai, Y. “Measuring architecture qual-

ty by structure plus history analysis”, IEEE Press, Piscataway, NJ,

SA, 2013, pp. 891 - 900.

Sellami, A., Hakim, H., Abran, A. and Ben-Abdallah, H. “A mea-

urement method for sizing the structure of UML sequence dia-

rams”, (59:3), 2015, pp. 222 – 232.

Serrano, M., Trujillo, J., Calero, C. and Piattini, M. “Metrics

or data warehouse conceptual models understandability”, (49:8),

007, pp. 851 - 870.

Shepperd, M. “Early life-cycle metrics and software quality

odels”, (32:4), 1990, pp. 311 - 316.

Sjoberg, D. I. K., Anda, B. and Mockus, A. “Questioning software

aintenance metrics: a comparative case study”, ACM, New York,

Y, USA, 2012, pp. 107 - 110.

Sohn, S. Y. and Mok, M. S. “A strategic analysis for success-

ul open source software utilization based on a structural equation

odel”, (81:6), 2008, pp. 1014 - 1024.

E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77 75

a

s

w

r

p

2

t

d

E

2

t

A

u

c

L

A

Q

“

p

m

1

1

m

c

D

a

p

M

M

F

(

i

s

R

A

A

A

A

B

B

B

B

B

B

C

C

C

E

E

F

G

G

G

H

H

I

I

I

J

K

K

K

K

K

K

L

L

M

M

N

O

P

R

Sun, X., Leung, H., Li, B. and Li, B. “Change impact analysis

nd changeability assessment for a change proposal: An empirical

tudy”, (96:10), 2014, pp. 51 – 60.

Thwin, M. M. T. and Quah, T.-S. “Application of neural net-

orks for software quality prediction using object-oriented met-

ics”, (76:2), 2005, pp. 147 - 156.

Tsaur, W.-J. and Horng, S.-J. “A new generalized software com-

lexity metric for distributed programs”, (40:5–6), 1998, pp. 259 -

69.

Tu, Y. -C., Tempero, E. and Thomborson, C. “An experiment on

he impact of transparency on the effectiveness of requirements

ocuments”, accepted for publication, 2015, pp. 1 - 32.

Verelst, J. “The Influence of the Level of Abstraction on the

volvability of Conceptual Models of Information Systems”, (10:4),

005, pp. 467 - 494.

Voas, J. M. and Miller, K. W. “Semantic metrics for software

estability”, (20:3), 1993, pp. 207 - 216.

Wagner, S., Lochmann, K., Heinemann, L., Kläs, M., Trendowicz,

., Plesch, R., Seidl, A., Goeb, A. and Streit, J. “The quamoco prod-

ct quality modelling and assessment approach”, IEEE Press, Pis-

ataway, NJ, USA, 2012, pp. 1133–1142.

Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampasona, C.,

ochmann, K., Mayr, A., Plösch, R., Seidl, A., Streit, J. and Trendowic,

. “Operationalised product quality models and assessment: The

uamoco approach”, (62:6), 2015, pp. 101 – 123.

Wagner, S., Lochmann, K., Winter, S., Goeb, A. and Klaes, M.

Quality models in practice: A preliminary analysis”, IEEE Com-

uter Society, Washington, DC, USA, 2009, pp. 464–467.

Wang, J., Zhou, Y., Wen, L., Chen, Y., Lu, H. and Xu, B. “DMC: a

ore precise cohesion measure for classes”, (47:3), 2005, pp. 167 -

80.

Weyuker, E. “Evaluating software complexity measures”, (14:9),

988, pp. 1357 - 1365.

Woo, G., Chae, H. S., Cui, J. F. and Ji, J.-H. “Revising cohesion

easures by considering the impact of write interactions between

lass members”, (51:2), 2009, pp. 405 - 417.

Yamashita, A. F., Benestad, H. C., Anda, B., Arnstad, P. E., Sjoberg,

. I. K. and Moonen, L. “Using concept mapping for maintainability

ssessments”, IEEE Computer Society, Washington, DC, USA, 2009,

p. 378–389.

Yau, S. and Collofello, J. “Design Stability Measures for Software

aintenance”, (SE-11:9), 1985, pp. 849 - 856.

Yau, S. and Collofello, J. “Some Stability Measures for Software

aintenance”, (SE-6:6), 1980, pp. 545 - 552.

Yue, T., Briand L. C. and Labiche Y. “aToucan: An Automated

ramework to Derive UML Analysis Models from Use Case Models”,

24:3), 2015, Article 13.

Zhang, H., Li, Y.-F. and Tan, H. B. K. “Measuring design complex-

ty of semantic web ontologies”, (83:5), 2010, pp. 803 - 814.

Zhang, K. and Gorla, N. “Locality metrics and program physical

tructures”, (54:2), 20 0 0, pp. 159 - 166.

eferences

bdellatief, M. , Sultan, A.B.Md. , Ghani, A .A .A . , Jabar, M.A . , 2013. A mapping study

to investigate component-based software system metrics. J. Syst. Softw. 86 (3),
587–603 .

bran, A. , Moore, J.W. , 2004. Guide to the Software Engineering Body of Knowledge.
IEEE Computer Society, Los Alamitos, CA .

lves, V. , Niu, N. , Alves, C. , Valenca, G. , 2010. Requirements engineering for software
product lines: a systematic literature review. Inf. Softw. Technol. Elsevier 52 (8),

806–820 .
l Dallal, J. , Briand, L. , 2012. A precise method-method interaction-based cohesion

metric for object-oriented classes. Trans. Softw. Eng. Methodol. Article 8 ACM 21

(2) .
ass, L. , Clements, P. , Kazman, R. , 2003. Software Architecture In Practice. Addis-

on-Wesley, Boston, USA .
ansiya, J. , Davies, C.G. , 2002. A hierarchical model for object-oriented design qual-

ity assessment. Trans. Softw. Eng. IEEE Comput. Soc. 28 (1), 4–17 .
asili, V.R. , Caldiera, G. , Rombach, H.D. , 1994. Goal question metric paradigm. In:
Encyclopedia of Software Engineering. John Wiley & Sons, pp. 528–532 .

ieman, J.M. , Kang, B. , 1995. Cohesion and reuse in an object-oriented system. In:
1st Symposium On Software Reusability (SSR’ 95). ACM, pp. 259–262. Seattle,

USA, 29 – 30 April .
riand, L.C. , Daly, J.W. , Wüst, J.K. , 1999. A unified framework for coupling measure-

ment in object-oriented systems. Trans. Softw. Eng. IEEE Comput. Soc. 25 (1),
91–121 .

riand, L.C. , Wüst, J.K. , 2002. Empirical studies of quality models in object oriented

systems. Adv. Comput. 56, 97–166 Elsevier .
ai, K.Y. , Card, D. , 2008. An An analysis of research topics in software engineering –

2006. J . Syst . Softw . 81 (6), 1051–1058 Elsevier .
atal, C. , Diri, B. , 2009. A systematic review of software fault prediction studies. In:

Expert Syst . Appl . , 36, pp. 7346–7354. Elsevier .
hidamber, S. , Kemerer, C. , 1994. A metrics suite for object oriented design. Trans.

Softw. Eng. IEEE Comput. Soc. 20 (6), 476–493 .

ckhardt, J. , Vogelsang, A. , Fernandez, D.M. , 2017. Are “non-functional” requirements
really non-functional? An investigation of non-functional requirements in prac-

tice. In: International Conference on Software Engineering (ICSE 2016), IEEE
Computer Society, pp. 832–842 .

lberzhager, F. , Münch, J. , Tran, N.N.V. , 2012. A systematic mapping study on the
combination of static and dynamic quality assurance techniques. Inf . Softw .

Technol . 54 (1), 1–15 Elsevier .

ebrero, F. , Calero, C. , Moraga, M.A. , 2014. A systematic mapping study of software
reliability modeling. Inf . Softw . Technol . 56 (8), 839–849 Elsevier .

alster, M. , Weyns, D. , Tofan, D. , Michalik, B. , Avgeriou, P. , 2014. Variability in soft-
ware systems—a systematic literature review. Trans. Softw. Eng. IEEE Comput.

Soc. 40 (3), 282–306 .
amma, E. , Helms, R. , Johnson, R. , Vlissides, J. , 1994. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Boston, USA .

enero, M. , Piattini, M. , Calero, C. , 2005. A survey of metrics for UML class diagrams.
J. Object Technol. 4 (9), 59–92 .

alstead, M.H. , 1977. Elements of software science. Elsevier Science Inc . USA, New
York .

arrison, R. , Counsell, S.J. , Nithi, R.V. , 1998. An evaluation of the MOOD set of
object-oriented software metrics. Trans. Softw. Eng. IEEE Comput. Soc. 24 (6),

4 91–4 96 .

SO/IEC 25023:20 03, 20 03. Systems and Software Engineering – Systems and Soft-
ware Quality Requirements and Evaluation (SQuaRE) – Measurement of System

and Software Product Quality. Geneva, Switzerland .
SO/IEC 9126-1:20 01, 20 01. Software Engineering – Product Quality (Part 1: Quality

model). Geneva, Switzerland .
SO/IEC/IEEE 24765:2010, 2010. Systems and Software Engineering — Vocabulary.

Switzerland, Geneva .

abangwe, R. , Börstler, J. , Šmite, D. , Wohlin, C. , 2004. Empirical evidence on the link
between object-oriented measures and external quality attributes: a systematic

literature review. Empirical Softw. Eng. 20 (3), 640–693 Springer .
itchenham, A. , 2010. What’s up with metrics? A preliminary mapping study. J . Syst .

Softw . 83 (1), 37–51 Elsevier .
itchenham, B. , Brereton, P. , Turner, M. , Niazi, M. , Linkman, S. , Pretorius, R. , Bud-

gen, D. , 2009. The impact of limited search procedures for systematic literature
reviews: a participant-observer case study. In: 3rd International Symposium on

Empirical Software Engineering and Measurement. IEEE Computer Society, Lake

Buena Vista, pp. 336–345. FLorida, 15 – 16 October .
itchenham, B. , Brereton, P. , Turner, M. , Niazi, M. , Linkman, S. , Pretorius, R. , Bud-

gen, D. , 2010. Refining the systematic literature review process – two partici-
pant-observer case studies. Empirical Softw . Eng . 15 (6), 618–653 Springer .

itchenham, B. , Brereton, P. , Budgen, D. , Turner, M. , Bailey, J. , Linkman, S. , 2009.
Systematic literature reviews in software engineering: a systematic literature

review. Inf . Softw . Technol . 51 (1), 7–15 Elsevier .

itchenham, B. , Pfleeger, S.L. , 1996. Software quality: the elusive target. IEEE Softw.
IEEE Comput. Soc. 13 (1), 12–21 .

upiainen, E. , Mäntylä, M.V. , Itkonen, J. , 2015. Using metrics in Agile and Lean Soft-
ware Development – a systematic literature review of industrial studies. Inf .

Softw . Technol . Elsevier 62, pp. 143-163 .
arman, C. , 2004. Applying UML and Patterns: An Introduction To Object-Oriented

Analysis And Design And Iterative Development, 3rd ed. Prentice Hall, Upper

Saddle River, New Jersey, USA .
i, W. , Henry, S. , 1993. Object-oriented metrics that predict maintainability. J . Syst .

Softw . 23 (2), 111–122 Elsevier .
artin, R.C. , 2003. Agile Software Development: Principles Patterns And Practices.

Prentice Hall, Upper Saddle River, New Jersey, USA .
cCabe, T. , 1976. A complexity measure. Trans. Softw. Eng. IEEE Comput. Soc. 2 (4),

308–320 .

ord, R.L. , Ozkaya, I. , Koziolek, H. , Avgeriou, P. , 2014. Quantifying software architec-
ture quality report on the 1st international workshop on software architecture

metrics. SIGSOFT Softw. Eng. Notes ACM 39 (5), 32–34 .
riol, M. , Marco, J. , Franch, X. , 2014. Quality models for web services: a systematic

mapping. Inf. Softw. Technol. 56 (10), 1167–1182 Elsevier .
etersen, K. , Feldt, R. , Mujtaba, S. , Mattsson, M. , 2008. Systematic mapping studies

in software engineering. In: 12th International Conference on Evaluation and

Assessment in Software Engineering (EASE’08). Bari, Italy, British Computer So-
ciety Swinton, pp. 68–77. 26 – 27 June .

adjenovi ́c, D. , Heri ̌cko, M. , Torkar, R. , Živkovi ̌c, A. , 2013. Software fault pre-
diction metrics: a systematic literature review. In: Inf . Softw . Technol . , 55,

pp. 1397–1418. Elsevier .

http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0047

76 E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77

v

V

Z

Z

Riaz, M. , Mendes, E. , Tempero, E. , 2009. A systematic review on software main-
tainability prediction and metrics. In: 3rd International Symposium on Empiri-

cal Software Engineering and Measurement (ESEM’09). IEEE Computer Society,
Florida, USA, pp. 367–377. 15-16 October .

Saraiva, J. , Barreiros, E. , Almeida, A. , Lima, F. , Alencar, A. , Lima, G. , Soares, S. , Cas-
tor, F. , 2012. Aspect-oriented software maintenance metrics: A systematic map-

ping study. In: 16th International Conference on Evaluation & Assessment in
Software Engineering (EASE 2012). IEEE Computer Society, Ciudad Real, Spain,

pp. 253–262. 14-15 May .

Sjøberg, D.I.K. , Dyba, T. , Jorgensen, M. , 2007. The future of empirical methods in
software engineering research. In: Workshop On the Future of Software Engi-

neering (FOSE ’07). IEEE Computer Society, Minneapolis, USA, pp. 358–378. 23 -
25 May .

Tahir, A. , MacDonell, S.G. , 2012. A systematic mapping study on dynamic met-
rics and software quality. In: 28th IEEE International Conference on Soft-

ware Maintenance (ICSM). IEEE Computer Society, Riva del Garda, Trento, Italy,

pp. 326–335. 23-28 September .
an Koten, C. , Gray, A. , 2006. An application of Bayesian network for predicting
object-oriented software maintainability. Inf . Softw . Technol . 48 (1), 59–67

Elsevier .
van Vliet, H. , 1993. Software Engineering: Principles and Practice (3rd Edition). Wi-

ley, Chichester, England .
argas, J.A. , García-Mundo, L. , Genero, M. , Piattini, M. , 2014. A systematic mapping

study on serious game quality. In: 18th International Conference on Evaluation
and Assessment in Software Engineering (EASE ’14), London, UK, pp. 13–14. Ar-

ticle 15, ACMMay .

hang, H. , Babar, M.A. , Tell, P. , 2011. Identifying relevant studies in software engi-
neering. Inf. Softw. Technol. 53 (6), 625–637 Elsevier .

hou, Y. , Xu, B. , 2008. Predicting the maintainability of open source software using
design metrics. Wuhan Univ. J. Nat. Sci. 13 (1), 14–20 Springer .

Wong, W.E. , Tse, T.H. , Glass, R.L. , Basili, V.R. , Chen, T.Y. , 2011. An assessment of
systems and software engineering scholars and institutions (20 03–20 07 and

20 04–20 08). J. Syst. Softw. 84 (1), 162–168 Elsevier .

http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0051
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0051
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0051
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0041a
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0041a
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0052
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0052
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0052
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0052
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0052
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0053
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0053
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0053
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0053
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0054
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0054
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0054
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0055
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0055
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0055
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0055
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0055
http://refhub.elsevier.com/S0164-1212(17)30016-X/sbref0055

E.M. Arvanitou et al. / The Journal of Systems and Software 127 (2017) 52–77 77

y of Groningen, the Netherlands, in the group of Software Engineering and Architecture.

he Aristotle University of Thessaloniki, Greece (2013), and a BSc degree in Information
ki, Greece (2011). Her research interests include software quality assurance and metrics,

 Johann Bernoulli Institute for Mathematics and Computer Science of the University of

 the area of software engineering. He holds a BSc on Information Systems (2003), an MSc
ineering by the Aristotle University of Thessaloniki (2012). His current research interests

ity, software quality management, open source software engineering and software design.
ournals and conferences. He is / was involved in over 10 R&D ICT projects, with funding

ngineering in the Department of Applied Informatics at the University of Macedonia,

cal Engineering and the PhD degree in Computer Science from the Aristotle University
rom 1997 to 1999 he was with Intracom S.A., Greece, as a telecommunications software

taff at the Hellenic Open University. His research interests include object-oriented design,
e has published more than 100 articles in international journals and conferences. He is a

ent of Computer Science and Software Engineering at the University of Canterbury, New

e develop high quality software, with a focus on software requirements engineering,

s, and empirical software engineering.

in the Johann Bernoulli Institute for Mathematics and Computer Science, University of
e Engineering research group since September 2006. Before joining Groningen, he was a

 for Informatics and Mathematics (ERCIM). He has participated in a number of national
opean industry of Software-intensive systems. He has co-organized several international

Conference on Software Engineering - ICSE). He sits on the editorial board of Springer
). He has edited special issues in IEEE Software, Elsevier Journal of Systems and Software

eer-reviewed articles in international journals, conference proceedings and books. His

with strong emphasis on architecture modeling, knowledge, evolution, patterns and link
Elvira Maria Arvanitou is a PhD Student at the Universit

She holds an MSc degree in Information Systems from t
Technology from the Technological Institute of Thessaloni

software maintainability and stability.

Dr. Apostolos Ampa tzoglou is a Guest Researcher in the

Groningen (Netherlands), where he carries out research in
on Computer Systems (2005) and a PhD in Software Eng

are focused on reverse engineering, software maintainabil
He has published more than 50 articles in international j

from national and international organizations.

Dr. Alexander Chatzigeorgiou is Professor of Software E

Thessaloniki, Greece. He received the Diploma in Electri
of Thessaloniki, Greece, in 1996 and 20 0 0, respectively. F

designer. Since 2007, he is also a member of the teaching s
software maintenance, and software evolution analysis. H

member of the Technical Chamber of Greece.

Dr. Matthias Galster is a Senior Lecturer in the Departm
Zealand. His current work aims at improving the way w

software architecture, development processes and practice

Dr. Paris Avgeriou is Professor of Software Engineering
Groningen, the Netherlands where he has led the Softwar

post-doctoral Fellow of the European Research Consortium
and European research projects directly related to the Eur

conferences and workshops (mainly at the International
Transactions on Pattern Languages of Programming (TPLOP

and Springer TPLOP. He has published more than 130 p

research interests lie in the area of software architecture,
to requirements.

	A mapping study on design-time quality attributes and metrics
	1 Introduction
	2 Related work
	2.1 Domain- or technology-agnostic studies
	2.2 Domain- or technology-specific studies
	2.3 Overview

	3 Study design
	3.1 Objectives and research questions
	3.2 Search process
	3.2.1 Selection of publication venues
	3.2.2 Search string and search strategy
	3.2.3 Overview of selection process

	3.3 Article filtering phases
	3.4 Keywording of abstracts (classification scheme)
	3.5 Data collection
	3.6 Data analysis

	4 Results
	4.1 Design-time quality attributes
	4.1.1 Quality attributes and application domains (RQ1.1)
	4.1.2 Quality attributes and development phases (RQ1.2)

	4.2 Quantification/Assessment of quality attributes through software metrics
	4.2.1 Quantification of quality attributes (RQ2.1)
	4.2.2 Quality attributes and quality metrics (RQ2.2)
	4.2.3 Validation of software metrics (RQ2.3)
	4.2.4 Quality metrics and software development phases (RQ2.4)
	4.2.5 Quality metrics and tools (RQ2.5)

	5 Discussion
	5.1 Interpretation of the results
	5.1.1 Quality attributes and metrics
	5.1.2 Application domains, development Phases, programming paradigms, and tools

	5.2 Synthesis and applicability of the results
	5.3 Implications for researchers and practitioners

	6 Threats to validity
	7 Conclusions
	Appendix A Publication venues
	Appendix B Primary studies
	 References

