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A B S T R A C T   

Context: The cornerstones of technical debt (TD) are two concepts borrowed from economics: principal and interest. Although in economics the two terms are related, 
in TD there is no study on this direction so as to validate the strength of the metaphor. 
Objective: We study the relation between Principal and Interest, and subsequently dig further into the ‘ingredients’ of each concept (since they are multi-faceted). In 
particular, we investigate if artifacts with similar levels of TD Principal exhibit a similar amount of TD Interest, and vice-versa. 
Method: To achieve this goal, we performed an empirical study, analyzing the dataset using the Mantel test. Through the Mantel test, we examined the relation 
between TD Principal and Interest, and identified aspects that are able to denote proximity of artifacts, with respect to TD. Next, through Linear Mixed Effects (LME) 
modelling we studied the generalizability of the results. 
Results: The results of the study suggest that TD Principal and Interest are related, in the sense that classes with similar levels of TD Principal tend to have similar 
levels of Interest. Additionally, we have reached the conclusion that aggregated measures of TD Principal or Interest are more capable of identifying proximate 
artifacts, compared to isolated metrics. Finally, we have provided empirical evidence on the fact that improving certain quality properties (e.g., size and coupling) 
should be prioritized while ranking refactoring opportunities in the sense that high values of these properties are in most of the cases related to artifacts with higher 
levels of TD Principal. 
Conclusions: The findings shed light on the relations between the two concepts, and can be useful for both researchers and practitioners: the former can get a deeper 
understanding of the concepts, whereas the latter can use our findings to guide their TD management processes such as prioritization and repayment.   

1. Introduction 

Technical Debt (TD), originally introduced in 1992 [11], is a meta
phor that represents the impact of shortcuts taken during development, 
usually to meet business goals, such as limited time or budget [19] on 
maintainability. The cornerstones of the TD metaphor are two terms 
borrowed from the concept of debt in finance: principal and interest. TD 
Principal is the effort required to eliminate inefficiencies in the current 
design or implementation of a software system [3]; typical examples of 
such inefficiencies are code and design smells. On the contrary, TD In
terest is the additional development effort required to modify the soft
ware (adding new features or fixing bugs), due to the presence of such 
inefficiencies [3]. The assessment of principal and interest depends on 
the type of TD (e.g., code, design, testing TD). The scope of this work is 

limited to TD on the source code, which is the most studied type of TD in 
the literature [2], the most supported by tools [2], and one of the most 
important in industry [5]. For simplicity, in the rest of the paper when 
we refer to TD, we imply code TD. For assessing TD Principal and TD 
Interest:  

• On the one hand, principal of TD is relatively straightforward to 
quantify: one needs to specify the relevant types of code in
efficiencies (e.g. understandability issues, violations of coding 
practices) and subsequently identify them in code, usually through 
automated analysis tools. In most approaches, principal is subse
quently quantified by summing up the estimated effort to fix each 
individual inefficiency. As an example, SonarQube [3,21] calculates 
TD Principal as the sum of the time required to fix code smells, which 
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map to different aspects of TD Principal (e.g., Coding Standards, 
Understandability)—for more details see Section 3.1.  

• On the other hand, quantifying TD Interest is more difficult, since an 
accurate calculation would require comparing the current version of 
a system with a zero-TD version, with respect to their difference in 
maintenance effort [1]. Of course, such a debt-free version does not 
exist and would be unrealistic to create in a real-world setting. In 
most cases, TD interest is quantified indirectly using proxies for the 
two core aspects of TD Interest: (a) maintainability (e.g. complexity, 
coupling, cohesion, size) reflecting the difficulty to make changes; 
and (b) actual maintenance effort, based on historical data (e.g. LOC 
modified per revision)– see Section 3.2. 

In economics, TD Interest and TD Principal are related through the 
interest rate: interest is calculated as a percentage of a loan (principal), 
paid to the lender periodically for the privilege of using that money. 
However, in the technical debt literature, the term interest rate has not 
and cannot be defined: according to Schmid [35], it is not possible to 
relate principal directly to an interest rate for a given interest period. 
That is because the actual interest rate depends on the specific mainte
nance activities performed and these cannot be determined a priori. To 
the best of our knowledge, there is currently no approach to relate TD 
Principal and Interest. Clarifying the relation between principal and in
terest would further validate the strength of the TD metaphor in soft
ware development and maintenance. More importantly, this relation can 
be practically used in estimating TD indices, but also managing indi
vidual TD items. For example, if a certain aspect of TD Principal, such as 
a specific type of code smell, incurs more interest compared to others, 
then it should be ranked higher through: preventing the associated code 
smells, prioritizing the refactorings of those smells, and eventually 
repaying them with refactoring applications. 

According to Eisenberg [12], Lockheed Martin is monitoring TD, by 
using an excel sheet, in which class names are colored based on their 
perceived levels of technical debt. Such an approach serves two pur
poses: (a) ranking of classes with respect to their levels of TD, and (b) 
grouping classes into groups of similar TD. In this paper, we build upon 
the rationale of such an approach for TD monitoring, by investigating if 
artifacts with similar levels of TD Principal have similar levels of TD 
Interest. More specifically, we investigate if there is a relation: (a) be
tween TD Principal and TD Interest; and (b) between the aspects of TD 
Principal and TD Interest. To achieve the aforementioned goals and by 
taking into consideration the multifaceted nature of the examined con
cepts, we employ the Mantel test [24]. The main benefit of using the 
Mantel test, compared to a traditional correlation analysis, is that it 
offers the opportunity to study the relationship of concepts that can be 
decomposed into aspects (in our case TD principal and interest), in a 
hierarchical manner. Since this study focuses on exploring the relations 
between TD concepts and their aspects, we believe that the Mantel test is 
more appropriate than traditional correlation, which would be able to 
accurately answer only goal (a). More details for the Mantel test are 
provided in Section 4.4.1. In addition, we have performed Linear Mixed 
Equation (LME) modelling to investigate the extent to which the ob
tained results are not affected by the random effect of project selection, 
but they are due to the examined factors and parameters; this supports 
the generalizability of the results. The main findings of the study vali
date the relation between TD Principal and TD Interest (illustrating that 
classes with similar levels of TD Principal tend to have similar levels of 
TD Interest), and that certain quality properties (e.g., coupling and size) 
should be prioritized while ranking refactoring opportunities. The rest of 
the paper is organized as follows: Section 2 provides an overview of 
related work, in Section 3, we present the background information that 
is required for understanding underlying concepts. In Section 4, the case 
study design is overviewed. The results are presented in Section 5, and 
discussed in Section 6. Threats to validity are presented in Section 7, 
whereas Section 8 concludes the paper. 

2. Related work 

The goal of this section is to present: (a) works aiming to connect TD 
Principal to TD Interest—see Section 2.1; and (b) studies that focus on 
the quantification of TD Interest—see Section 2.2. We note that we do 
not discuss works on calculating TD Principal, since it is considered a 
straightforward task: According to Alves et al. [2], the principal is 
related to the effort / cost to eliminate the debt from a given system or 
artifact. Current software analysis tools offer estimates of TD Principal 
based on counts of detectable violations (e.g., SonarQube, CAST, Squore, 
etc.). 

2.1. Relation between TD Principal and Interest 

In the literature, we have identified five studies that aim at exploring 
the relation between TD Principal and Interest. Table 1 outlines the 
studies, by presenting the TD Principal / Interest assessors, and the main 
conclusion of each study. Next, we present these studies in detail, and 
compare them against our study. 

Zazworka et al. [41], compare the similarities and differences among 
four approaches for TD identification, namely modularity violations, 
grime buildup, code smells and automatic static analysis. Given the fact 
that there are plenty of tools that can automatically detect a number of 
source code anomalies, the study considers four main techniques for TD 
detection, selected primarily by the criterion of authors’ previous 
experience. The study aims at investigating if these approaches result in 
pointing out the same set of problematic issues. Moreover, the authors 
explore the extent to which the four techniques point to instances with 
high TD Interest. Since interest (i.e., the probable future cost of not fixing 
the debt) is regarded as difficult to detect and measure, the authors 
select to use two interest indicators, i.e., defect-proneness and 
change-proneness. The selection of the proxies has been made among a 
number of interest indicators, based on their correlation with prob
lematic code manifestation and future maintenance cost. The authors 
conduct a case study, where they implement the four techniques on 
Apache Hadoop software. Their results show that: (a) different tech
niques identify different TD issues, (b) classes identified with high TD, 
with the use of modularity violations and code smells, seem to be more 
defect-prone, while modularity violations are strongly related to 
change-prone classes. Zazworka et al. [41] use four different approaches 
to TD identification and focus on defect-proneness and 
change-proneness as TD interest indicators, as their goal is the 

Table 1 
TD Principal – TD Interest Relation  

Ref. TD Principal 
Assessor 

TD Interest Assessor Main Outcome 

[10] Modularity 
anomalies as 
index of TD 

Maintainability 
(expressed as stability) as 
a main characteristic 
related to TD interest 

Improvement of 
modularity is related to 
important benefits in 
terms of stability, and 
lead to the reduction of 
TD interest 

[16] Architecture 
roots (flawed 
structures) 

Coupling and Cohesion 
(indicating higher 
maintenance effort) 

TD items incur high 
maintenance penalties 

[18] SQALE method Structural proxies (quality 
metrics) 

Some quality metrics are 
positively related and 
others are negatively 
related to TD principal 

[23] Coupling 
between 
components 

Defect-related activity Highly-coupled 
components are more 
prone to defects, and 
costlier to maintain 

[41] Modularity 
Violations 

Defect Proneness 
Change Proneness 

Classes with more 
modularity violations 
and code smells, are 
more defect- and change- 
prone  
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comparison among the different methodologies. In our work, as 
mentioned earlier, we opt to focus on one TD principal estimation 
methodology, while we propose a more detailed approach of TD interest 
estimation, based on well-established maintainability metrics. 

Moreover, Conejero et al. [10] perform an empirical study aiming to 
evaluate if modularity anomalies at requirements level affect main
tainability attributes and therefore increase system’s interest. The study 
is based on a previously established framework that uses modularity 
metrics to identify and quantify modularity anomalies. A set of metrics is 
also used to assess the system’s stability, as a particular maintainability 
attribute. The authors regard the presence of crosscutting concerns in a 
system as a negative effect on modularity, which in turn is considered as 
a significant index of TD [2]. Modularity violations are expected to raise 
interest, given the fact that they may affect different quality attributes 
and hence cause negative impact on the system’s quality. The paper 
attempts to prove the relation between modularity anomalies at the 
early stages of software development, i.e., the requirements level, with 
software maintainability—with regard to stability. Since maintain
ability is deemed a main contributor to TD Interest, if the aforementioned 
relation is proven, then modularity violations can be linked to interest 
escalation. The study is performed on three different industrial appli
cations. The results suggest the existence of a relationship between the 
Degree of Crosscutting properties, as a measure of modularity, and the 
stability of a certain feature. Therefore, the authors conclude that 
improvement of modularity could deliver important benefits in terms of 
stability, enhancing the maintainability of the system and lead to the 
reduction of TD Interest. Compared to our study, Conejero et al. [10] 
focus on modularity anomalies, as indicator of its quality, while they do 
not explicitly refer to principal. Also, they refer to stability as a main
tainability attribute, whereas our work considers: inheritance, coupling, 
cohesion, complexity and size, as maintainability-related properties. 

Additionally, Kosti et al. [18], explore the correlation between: (a) 
structural proxies (i.e., quality metrics); and (b) monetized values using 
the SQALE method, by conducting a case study on a set of 20 OSS pro
jects. The results of the study suggest that a model of seven structural 
metrics, quantifying different aspects of quality (i.e., coupling, cohesion, 
complexity, size, and inheritance) can accurately estimate TD principal 
as appraised by SonarQube. More specifically, two coupling metrics 
(MPC and MOA) and one cohesion metric (LCOM) are positively related 
to technical debt principal, while CIS, NOP and DIT are negatively 
related to the accumulation of TD. While both the study of Kosti et al. 
[18] and ours use the same maintainability metrics, Kosti et al. do not 
explicitly refer to a connection between these metrics and TD interest. 

McCormack and Sturtevant [23] address architectural debt by 
attempting to assess the potential value derived from a refactoring 
effort. To this end, they try to evaluate the relationship between system 
design decisions, which lead to TD, and increased costs of maintenance, 
which represent the interest to be paid. More specifically, the authors 
analyze how components with higher levels of coupling can be associ
ated with higher maintenance costs. Firstly, based on their prior work, 
the authors apply a technique, namely Design Structure Matrix to 
analyze the system’s architecture, capture the dependencies and calcu
late the coupling between components. This allows them to divide the 
components into groups, according to their levels of coupling, and then 
to characterize the system as a Core-Periphery one—if it possesses a 
large, dominant, cyclic group of components, namely the Core—or as a 
Hierarchical one—if it has small cyclic groups or no cyclic groups at all. 
In the empirical study, the authors analyze two large projects of similar 
size, one of them classified as a Core-Periphery system and the second as 
a Hierarchical one. The descriptive analysis supports the hypothesis 
that, for both systems, high-coupling components are more probable to 
experience defects and hence to be related with higher defect-related 
activity. The authors also perform a predictive analysis, by creating 
two statistical models, one to predict the probability of a component to 
experience a defect and another one to predict the volume of 
defect-related activity. Number of lines of code in a file and its 

cyclomatic complexity are used as control variables and are proven to be 
positive and statistically significant for both systems and both models. 
However, models with predictor variables added show a strong relation 
between components with high coupling and: (a) the likelihood of 
experiencing a defect, as well as (b) the defect-related activity. The 
authors also introduce a financial analysis, where they calculate a cost 
per line of code per year, by component category, to maintain each 
system. The analysis indicates that tightly coupled components cost 
more to maintain than loosely coupled ones. Finally, the study suggests 
that repaying architectural TD by reducing coupling and lowering 
maintenance costs may be valuable; however, managers should also 
consider the cost of these refactorings. In comparison to our study, the 
work of McCormack and Sturtevant [23] uses architectural design flaws 
that lead to tightly-coupled components as a TD proxy, and assumes that 
maintenance costs represent TD interest; our work focus on source code 
issues to identify TD principal and adopt a set of maintainability metrics 
as TD interest proxies, so as to provide a more thorough analysis of the 
relationship between the two terms. 

Furthermore, Kazman et al. [16] focus on architectural TD in terms 
of flawed architecture structures, termed as architecture roots [39]: 
these are considered technical debt items that incur high maintenance 
penalties as identified through coupling and cohesion. They validate 
their methodology by conducting a case study with an industrial part
ner. However, Kazman et al. [16], do not differentiate between TD In
terest and TD principal, and therefore it is not evident if they consider 
maintenance penalties as principal or interest, since the term debt is 
used collectively in that study. 

Compared to related work, our study has a clear focus on identifying the 
relationship between TD Principal and TD Interest. To this end, it adopts 
well-validated valuation approaches, and provides an in-depth statistical 
analysis of the aforementioned relationship, based on the Mantel test and 
LME. 

2.2. Quantification of TD Interest 

In this section we present papers that deal with TD Interest calcu
lation. In Table 2, we summarize studies that quantify TD interest, 
including those already presented in Section 2.1. In particular, in 
Table 2, we note how TD interest is assessed, if the study acknowledges 
the relation of TD Interest to maintainability, if it uses historical data 
(from software repositories) for TD interest calculation and whether 
they propose explicit metrics for assessing interest. We remind that 
maintainability and the use of historical data to calculate maintenance 

Table 2 
TD Interest Assessment  

Ref. TD Interest Assessor Maintainability History Metrics 
[7] The extra effort needed to 

maintain a system due to the 
accumulation of TD in terms of 
wasted software development 
time 

x   

[10] Maintainability (expressed in 
terms of stability) as a main 
characteristic related to TD 
interest 

x x  

[16] Coupling and Cohesion indicate 
higher maintenance effort  

x  

[18] Structural proxies (i.e., quality 
metrics)  

x x 

[23] Defect related activity x x x 
[28] Effort spent on maintenance 

activities based on historical data  
Effort needed to rebuild a system 
Level of software quality 

x x x 

[41] Defect Proneness and Change- 
proneness 

x x   
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effort are the two core aspects of TD interest. 
Concerning the studies already discussed in Section 2.1, Conejero 

et al. [10] acknowledge that “maintainability is one of the main charac
teristics contributing to Technical Debt interest”, and decide to capture it 
through the quality property of stability which is one of the most 
important maintainability attributes. Specifically, Conejero et al. [10] 
measure stability by calculating the number of use cases changed in each 
release of the three systems they study. They define as a change in a use 
case: (i) a modification of the feature that the use case addresses, or (ii) a 
modification, addition, or deletion in the system that affects the 
particular feature. Similarly, Zazworka et al. [41] recognize that 
defect-proneness and change-proneness—the two proxies they use for 
TD Interest—are connected to future maintenance costs. The authors use 
historical data on the number of times a class is involved in fixing bugs, 
that were injected, resolved, or alive in a version, to measure 
defect-proneness. They also use data on the number of changes affecting 
the class divided by the total number of changes in the repository, to 
calculate change-proneness. 

Moreover, McCormack and Sturtevant [23], as mentioned earlier, 
aim at analyzing the relationship between design decisions and main
tenance costs, generally deemed to represent TD Interest. The authors 
approach maintenance costs through maintenance effort, i.e., effort 
spent on defect related activities: a metric computed through 
bug-tracking and version control systems represents the development 
activity that aims at defect correction. On the other hand, Kazman et al. 
[16] focus on the relationship between architecture roots, i.e., flawed 
structures, and the penalties they incur in terms of higher maintenance 
costs. They retrieve data concerning the number of defects fixed, the 
number of changes associated with architecture roots that were fixed, 
and the number of lines of code committed to fix the defects and to make 
the changes during the prior year. They then estimate the cost of 
refactorings to calculate the penalty in terms of maintenance cost. 
However, as mentioned before, Kazman et al. [16] do not refer to this as 
TD interest. Finally, Kosti et al. [18] have used structural quality met
rics, that are used to assess maintainability (coupling, cohesion, 
complexity, inheritance, and size metrics), as proxies of TD interest. 

In addition to the five studies of Section 2.1, we have identified two 
more studies that attempt to estimate interest and relate it to main
tainability. The first one is by Nugroho et al. [28], who use SIG/TUV’s 
software quality assessment method for TD measurement. Particularly, 
they perform source code analysis that involves metrics, such as lines of 
code (LOC), code duplication, McCabe’s cyclomatic complexity, 
parameter counts, and dependency counts, to map the system’s quality 
properties to a five-star rating system, and calculate the Repair Effort, i. 
e., the effort needed to reach the ideal quality level, which represents the 
amount of the system’s TD. With regard to the system’s TD Interest, 
which is defined as “the extra maintenance cost spent for not achieving the 
ideal quality level”, the authors estimate it as a function of: (a) the effort 
spent on maintenance activities within a year, calculated based on his
torical data, as a percentage of number of LOC estimated to change 
yearly for maintenance reasons; (b) an estimate of the effort needed to 
rebuild a system using a particular technology, determined by the total 
size of the system (measured in LOC or Function Points) and a language 
productivity factor; (c) a factor used to account for the level of quality, 
assuming that the higher the quality level, the less the maintenance 
effort. 

Besker et al. [7], attempted to quantify TD Interest in terms of wasted 
software development time through an empirical study, based on the 
admission that interest is defined as the extra effort needed to maintain a 
system due to the accumulation of TD. They perform a web-based survey 
answered by 258 software stakeholders and they conduct interviews 
consisted of unstructured, semi-structured and fully structured questions 
with development teams within seven software companies. The results 
of the study show that, according to the respondents, 36% of all software 
development time is on average wasted because of paying the interest of 
TD. The study also reveals that the system age influences the wasted 

time, however there is no linear correlation between the two. Moreover, 
Architectural Design and Requirement TD seem to cause the most 
negative effect on software development, whereas there is no significant 
differentiation on how a stakeholder’s role affects the perception of 
wasted time. Finally, the respondents estimate that a significant per
centage of wasted time is spent on understanding and measuring TD 
issues. 

The state of the art in quantifying TD Interest is based on main
tainability and change proneness (either due to defects or new fea
tures). Furthermore, the metrics used as proxies for TD Interest are 
either structural ones, or rely on historical data. We adopt the same 
strategy and use both types of metrics. 

3. Background information 

In this section, we present background information. Section 3.1 de
scribes the estimation of TD Principal using SonarQube (based on 
SQALE), while Section 3.2 presents our approach for assessing TD 
Interest. 

3.1. TD Principal Calculation 

For the purpose of this study, we have decided to estimate principal 
at the source code level, based on the computations provided by a widely 
used platform, namely SonarQube [3,21]. SonarQube can assess the 
quality of software relying on quality measures and issues, such as 
coding rule violations. The platform algorithm was originally based 
upon an adopted version of the SQALE method proposed by Letouzey 
and Ilkiewicz [20], in which a remediation index is obtained for the 
requirements of an applicable Quality Model. For example, for a 
requirement stating that all files should have at least 70% code coverage, 
the corresponding remediation action is to write additional tests; a 
remediation function maps effort to each action. Finally, for each arti
fact, the remediation index relating to all the characteristics of the model 
is obtained by adding all remediation indices linked to all quality re
quirements. The resulting SQALE Index is considered to represent TD 
Principal of the source code. 

SonarQube calculates TD Principal by identifying code smells (as the 
corresponding Quality Model requirements) and calculating their 
remediation. For identifying the existence of code smells, SonarQube 
version 7.9 (for Java) relies on 562 rules (e.g., “Method overrides should 
not change contracts”, “Package declaration should match source file 
directory”, “Parameters should be passed in the correct order”, “Unused la
bels should be removed”). SonarQube rules are associated with (by 
default) nineteen tags (see Table 31); however, the user is given the 
chance to create custom tags at will. Since the number of tags is quite 
high, it is expected to lead to a sparse table in the data collection phase, 
we decided to group the tags into 4 categories. We call these categories 
Aspects of TD Principal: (a) Understandability, (b) Poorly Written Code, 
(c) Security/Runtime, and (d) Coding Standards (see Table 3). We note 
that some tags could potentially belong to different tag categories, as 
well as, additional tag categories could have been created. For instance, 
groups could have also been created by inspecting the effects of a spe
cific code smell, instead of the cause of the smell (e.g., clumsy code is a 
poorly written code, which has a negative effect on understandability). 
However, in our study we have selected not to consider cause-effect 
relations, in the sense that such a taxonomy would not uniquely cate
gorize all tags. Thus, we have built the classification schema only based 
on the root of the smell and not on the affected categories. To eliminate 
(as much as possible) the objectivity of this categorization, each one of 

1 From the nineteen default tags of SonarQube, we deleted user-experience, 
since it does not relate to software maintainability. 
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the senior researchers of the study proposed a classification of his own, 
and after some negotiation rounds (similar to the Delphi technique) they 
have reached a consensus on the Aspects of TD Principal, as well as the 
mapping of Code Smell Tags to them. Nevertheless, since this decision is 
still objective a relevant threat to construct validity has been identified. 
Moreover, we acknowledge that SonarQube is not a perfect solution for 
measuring TD principal, as a perfect solution does not exist; we expand 
on the limitations of using SonarQube in the Threats to Validity Section. 

3.2. TD Interest Calculation 

In this study, we calculate interest using the FITTED framework, as it 
has been proposed [4,6,8] and empirically validated in our previous 
work [6,37]. The validation was performed in an industrial setting and 
contrasted the scores for TD Principal and TD Interest with the percep
tion of software engineers. The results suggested a rank correlation for 
0.83 for TD Principal and 0.73 for TD Interest. We only recap the basic 
notions of the FITTED framework here and refer to the aforementioned 
works for further details. 

Assuming that a system has an actual implementation, and a hypo
thetical optimal implementation (in terms of maintainability—i.e., ease 
to maintain), maintaining the optimal system would require less effort 
than maintaining the actual system (see Fig. 1). Despite the fact that a 

system can by no means be characterized as globally optimal, based 
solely on the optimization of some structural characteristics, there is a 
plethora of studies aiming at software optimization, guided by the 
application of software refactorings (e.g., [14,29,30])2. As shown in 
Fig. 1, adding a new feature A to the optimal system would need a 
certain effort, noted as Effort(optimum), whereas adding the same feature 
to the actual system necessitates a larger effort, noted as Effort(actual). 
The difference between these two efforts represents the TD Interest that 
is accumulated during this maintenance activity. 

According to FITTED [8], maintenance effort is inversely related to 
the maintainability of the system—see Eq. (1). Although the relation 
between effort and maintainability is not necessarily (or by definition) 
linear, several studies model maintenance effort (through regression 
modeling) as a polynomial of maintainability indicators (e.g., [38,42]), 
achieving satisfactory prediction accuracy. In particular, van Koten and 
Grey [38] propose a linear model3, whereas Zhou et al. [42] propose a 
multivariate adaptive regression spline model4. Despite the differences 
in the modelling of the solutions, both studies suggest that there can be a 
linear relation between maintenance effort and maintainability. 

Effort = a
1

maintainability
(1) 

Given Eq. (1), the maintenance effort for the optimal system (which 
is unknown), can be estimated as the product of the maintenance effort 
for the actual system and the ratio of the maintainability of the actual 
over the maintainability of the optimal system (we call this ratio 
Maintainability Level) [8]—see Eq. (2). 

Effortoptimum

Effortactual
=

a
maintainabilityoptimum

a
maintainabilityactual

=
maintainabilityactual

maintainabilityoptimum

= MaintainabilityLevel (2) 

Finally, based on its definition in Fig. 1, TD Interest can be calculated 
using the difference between the actual and the optimal effort, as follows 
[8]—see Eq. (3): 

TD interest = ΔEffort = Effort(actual) − Effort(optimum)

= Effort(actual) − Effort(actual) × (MaintainabilityLevel)

= Effort(actual) × (1 − MaintainabilityLevel) (3) 

In practice, the above calculation is multiplied by the constant value 

Table 3 
Default metrics-tags provided by SonarQube  

Aspect TD 
Principal 

Code Smell 
Tags 

Description Aspect TD 
Principal 

Code Smell 
Tags 

Description 

Understandability brain- 
overload 

There is too much to keep in your head at one time Security / 
Runtime 

Cwe Relates to a rule in the Common Weakness 
Enumeration.  

confusing Will take maintainers longer to understand than is 
really justified by what the code actually does  

Bug Something is wrong and it will probably affect 
production 

Poorly Written 
Code 

clumsy Extra steps are used to accomplish something that 
could be done more clearly and concisely  

owasp-.* Relates to rules in the OWASP Top-10 security 
standards  

bad-practice The code likely works as designed, but the way it 
was designed is widely recognized as being a bad 
idea  

unpredictable The code may work fine under current 
conditions, but may fail erratically if conditions 
change  

design There is something questionable about the design of 
the code  

Suspicious It’s not guaranteed that this is a bug, but it looks 
suspiciously like one  

lock-in Use of environment-specific features  Security Relates to applications’ security  
unused Unused code  Pitfall Nothing is wrong yet, but something could go 

wrong in the future 
Coding Standards Cert Relates to rules in a CERT standard Coding 

Standards 
Misra Relates to rules in MISRA standards  

Convention Coding convention violation  sans-top25-.* Relates to the SANS Top 25 Coding Errors, 
which are security-related  

Fig. 1. Increased Maintenance Effort for TD items  

2 The relevant research area is termed search-based software engineering.  
3 effort = c0 +

∑
wimaintainability indicatori  

4 effort = c0 +
∑

wi
∏
(maintainability indicatori − ti)
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of Unit Cost of Maintenance (e.g. $ or € per hour), but that is irrelevant 
for this study (although it is calculated), since the Mantel test employed 
in this study considers distance matrices. Therefore, as aspects of TD 
Interest, we consider (a) the Maintainability Level; and (b) the actual 
Maintenance Effort of the system under study. The former is related to 
structural properties of the corresponding system while the latter can be 
estimated using historical information, as elaborated below. 

Maintainability Level. Although no single function can capture all 
aspects of quality, for the sake of simplicity, we assume that the optimal 
system is the one that optimizes a certain fitness function assessing the 
quality of software (e.g., in terms of complexity, cohesion, coupling, 
etc.). Thus, to calculate the maintainability level, we first identify a set 
of similar artifacts (e.g., classes, packages, systems—see [6]), we then 
calculate the optimal value of the metric score within the set of similar 
(in terms of lines of code, number of methods, cognitive complexity, 
etc.) artifacts. The maintainability optimal artifact is an artificial one 
that is assigned the “best” metric scores, among the similar artifacts: i.e., 
the metric score of lowest complexity, highest cohesion, lowest 
coupling, etc. For example, given five similar artifacts with complexity 
scores: 2, 5, 3, 8, 11; the artificial optimal artifact would be assigned a 
complexity score of 2. Then we calculate the average ratio of the metric 
score of the artifact under study, compared to the optimal value. 
Maintainability, although not associated to a universally accepted 
definition, is widely accepted as the ease of making changes into a 
system [15]. The set of metrics that we have selected to use in our study 
for quantifying maintainability (see Table 4) belong to well-known 
metric suites [9,22]. The metrics selection was based on a secondary 
study by Riaz et al. [32], which reported on a systematic literature re
view (SLR) aimed at summarizing software metrics that can be used as 
maintainability predictors. 

In particular, Riaz et al. [32] have performed a quality assessment of 
maintainability models, through a quantitative checklist, in order to 
identify studies of high-quality score, i.e., studies that provide reliable 
evidence. More specifically, the checklist was comprised of 19 questions 
and each model was assessed for each criterion by a three-point scale: 
yes, no, or partially, with associated scores of 1, 0, and 0.5 respectively. 
The range of the total score of each study was between 0 and 19. All 
studies that have scored 7 or below were excluded from the list of 
selected studies, whereas among the studies with the highest scores were 
those of van Koten and Gray [38], and Zhou and Leung [42]. Both 
studies (i.e., [38,42]) have used the same definition of maintainability 
and they have been based on two metric suites proposed by Li and Henry 
[22] and Chidamber et al. [9], i.e., two well-known object-oriented set 
of metrics. The employed suites contain metrics that can be calculated at 

the source-code level, and can be used to assess well-known quality 
properties, such as inheritance, coupling, cohesion, complexity and size. 
We note that according to Riaz et al. [32], another study (performed by 
Misra [27]) scored equally to the previously mentioned ones. However, 
Misra was using metrics coming from multiple suites (2 out of the 4 are 
already considered), and we preferred to select those that were common 
in the studies. 

Maintenance Effort: Since the evolution of the software cannot be 
predicted, it is not possible to foresee what kind of modifications will be 
made in a system during future releases. Hence, we base our assessment 
of future maintenance effort on historical data, by considering past effort 
spent on maintenance activities. More specifically, as maintenance effort 
we assume the average lines of code added/deleted/modified between 
all pairs of successive versions of a system. This strategy has been used in 
a variety of studies e.g., [10,16,18,23,28], and [41]. 

4. Case study design 

Case study is an observational method that is used for studying 
phenomena in a real-life context [34]. This case study has been designed 
and is presented according to the guidelines of Runeson et al. [34]. 

4.1. Research Objectives and Research Questions 

The goal of the paper, as mentioned in Section 1, is to investigate the 
relation between TD Principal and Interest, as well as the relation be
tween the Aspects of TD Principal (see Section 3.1) and the Aspects of TD 
Interest (see Section 3.2). An overview of the aspects of TD Principal and 
TD Interest, is presented in Fig. 2. We note that the calculation of each 
aspect at a higher level, is an aggregation of the lower level:  

• We remind that TD Principal has four aspects that correspond to the 
categories of code smell tags. As explained in Section 3.1 TD Prin
cipal is calculated as the sum of TD Principal due to Understand
ability, Security/Runtime Issues, TD Principal due to Poorly Written 
Code, and TD Principal due to the Violation of Coding Standards.  

• TD Interest on the other hand has two aspects (at the second level): 
Maintainability Level (ratio of maintainability of actual vs. optimal 
case) and Maintenance effort. The aggregation formula from the 2nd 

to the 1st level is provided in Section 3.2 (see Eq. 3). Maintainability 
is further decomposed into five structural properties, while Mainte
nance effort constitutes historical change. We consider these five 
structural properties and the historical changes as aspects of TD in
terest at the third level. The function for aggregating the 3rd level 
aspects to Maintainability Level is the average of the distance from 
optimal, as explained in Section 3.2. 

Based on this overview, and the goal of this study (i.e., to explore the 
relation between TD Principal and TD Interest, as well as their aspects), 
we have formulated three research questions. 

RQ1: Is TD Principal related with TD Interest? 

This research question aims to explore if source code artifacts with a 
similar level of TD Principal are presenting similar levels of TD Interest. 
The existence of such a relation, would suggest that interest-related in
formation could be subsumed by principal-related information, and 
therefore TD management, based only on TD Principal would make 
sense. With respect to Fig. 2 this research question explores the relation 
of the 1st level of TD Principal with the 1st level of the TD Interest 
hierarchy. 

RQ2: Which Aspects of TD Interest are more related to TD Principal? 

Given the fact that TD Interest calculation considers two 2nd level 
aspects (maintainability level and maintenance effort), we first explore 

Table 4 
Maintainability Properties and Metrics  

Property Metric Description 
Inheritance 

(Inh) 
DIT Depth of Inheritance Tree: Inheritance level number, 

0 for the root class.  
NOCC Number of Children Classes: Number of direct sub- 

classes that the class has. 
Coupling (Cpl) MPC Message Passing Coupling: Number of send statements 

defined in the class.  
RFC Response for a Class: Number of local methods plus the 

number of methods called by class methods.  
DAC Data Abstraction Coupling: Number of abstract types 

defined in the class. 
Cohesion (Coh) LCOM Lack of Cohesion of Methods: Number of disjoint sets of 

methods in the class. 
Complexity 

(Com) 
CC Cyclomatic Complexity: Average cyclomatic 

complexity of methods in the class.  
WMPC Weighted Method per Class: Weighted sum of methods. 

Each method of the class is assigned to a weight equal 
to 1. 

Size (Size) SIZE1 Lines of Code: Number of semicolons in the class.  
SIZE2 Number of Properties: Number of attributes and 

methods in the class  
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if any one of these two aspects of TD Interest is more related to TD 
Principal (RQ2.1). The answer to this RQ can shed light into the impor
tance of the constituents of TD Interest, and guide researchers in their 
future attempts to quantify interest. Next, we focus on the maintain
ability level aspect of TD Interest and investigate which of the 3rd level 
aspects (i.e., coupling, cohesion, complexity, size, or inheritance) are 
more related to TD Principal (RQ2.2). We note that we are not performing 
a similar analysis for the historical change data (i.e., we do not further 
split this concept), since no actionable outcome can be reached by such 
an investigation: you cannot change the history of a project. In contrast, 
structural properties that appear to be of more interest can be improved 
or prioritized; for instance, in case cohesion ends up being an important 
property, classes that suffer from low cohesion can be refactored (e.g., 
split method, split class, etc.). With respect to Fig. 2 this research 
question focuses on the relation between the 1st level of TD Principal and 
the 2nd and 3rd Level of TD Interest. 

RQ3: Which Aspects of TD Principal are more related to TD Interest? 

The third research question deals with comparing different Aspects of 
TD Principal (of the 2nd level), with respect to the interest that they are 
expected to incur. In this research question, we investigate if and which 
of the Aspects of TD Principal are related to the highest interest. This 
question becomes extremely relevant for preventing, prioritizing, and 
repaying specific aspects of TD Principal within the same technical debt 
item. For example, if it turns out that understandability issues are pro
ducing more interest compared to poorly written code issues, then the 
issues of the aspect should be prioritized. With respect to Fig. 2 this 
research question focuses on the 2nd level of TD Principal and the 1st level 
of TD Interest. 

4.2. Case Selection and Unit Analysis 

The study of this paper is characterized as multiple, embedded case 
study [34], in which the cases are the OSS projects and the units of 
analysis are their classes. The reason for using OSS systems is the vast 
amount of available data in OSS repositories, in terms of versions and 
classes. To obtain data from high-quality projects (see Table 5) that 
evolve over a period of time, we require that the software systems: 

Fig. 2. Aspects of TD Principal and TD Interest  

Table 5 
OSS Projects Selected for the Case Study  

Name Short Description #classes 
Apache XML Graphics  

(XMLGraph) 
Apache XML Graphics Commons is a library 
that consists of several reusable components 
used by Apache Batik and Apache FOP 

109 

Commons Math 
(ComMath) 

It is a library for mathematics and statistics 
components 

901 

Commons Collection 
(ComColection) 

The Apache Commons Collections package 
contains types that extend and augment the 
Java Collections Framework. 

307 

Commons Net 
(ComNet) 

Apache Commons Net library implements the 
client side of many basic Internet protocols. 

148 

Commons IO (ComIO) Commons IO is a library to assist with 
developing IO functionality. 

113 

Commons Jelly 
(ComJelly) 

Jelly is a tool for turning XML into executable 
code. 

73 

Http Components – 
Core 
(HTTPCore) 

Http Core is a set of HTTP transport 
components, used to build client and server 
services. 

368 

Http Components – 
Client 
(HTTPClient) 

Http Components is responsible for creating 
and maintaining a toolset of Java components. 

294 

Apache Struts (Struts) Struts is an MVC framework for creating 
modern Java web applications. 

622 

Xerces 2 Java 
(Xerces2Java) 

Xerces2 is a library for parsing, validating and 
manipulating XML files 

665  
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• Are popular OSS project of the Apache community. This ensures that 
the investigated projects are recognized as important by the OSS 
community, i.e., there is substantial system functionality and sub
stantial development activity in terms of bug-fixing and adding 
requirements.  

• Are written in Java. We include this criterion because of the 
employed metric calculation tools.  

• Contain more than 70 classes. This ensures that we will not include 
“toy examples” in our dataset. After data collection, a manual in
spection of the projects has been performed to guarantee that the 
classes are not trivial.  

• Have more than 5000 commits. We have included this for similar 
reasons to the first criterion. Although the selected number of ver
sions is ad/hoc, it is set to a relatively high value, in order to guar
antee high activity and evolution of the project. Also, this number of 
revisions provides an adequate set of repeated measures as input to 
the statistical analysis. 

4.3. Data Collection and Pre-Processing 

For the quantification of TD Principal, we used the SonarQube API to 
obtain the TD Principal metric for each one of the classes of the projects 
under analysis. Next, for each row in the dataset we recorded the 
number of instances of issues in each Tag Category, which are concen
trated in the class (5 variables). Regarding TD Interest, we used the TDM 
toolkit5 of the SDK4ED platform6, developed in the context of the 
SDK4ED project7. On the completion of data collection, each class (unit 
of analysis) was characterized by 12 variables—10 maintainability 
metrics, maintenance history, and TD Interest. The pre-processing was 
completed by the deletion of rows that contained missing values. 
Missing values can be found in cases a maintainability metric cannot be 
calculated: e.g., CC cannot be calculated for abstract methods, or LCOM 
cannot be calculated for interfaces. 

4.4. Data Analysis Methodology 

Since the main objective of the study is to examine whether classes 
that present similar levels of TD Principal, also produce a similar amount 
of TD Interest, classical approaches such as correlation analysis are not 
able to provide straightforward answers. Although traditional correla
tion coefficients can be used to explore the nature and strength of the 
pairwise relationship between variables of a multivariate dataset, they 
can only assess which subset of software metrics is associated to the TD 
Principal at the lowest level of the quality hierarchy. The current 
approach focuses on the similarity (dissimilarity) of classes to examine 
the association between TD Principal and TD Interest, by considering 
that TD Principal and TD Interest are multifaceted concepts that can be 
assessed through various aspects (see Section 3 and Fig. 2) synthesizing 
in turn, multidimensional spaces of metrics. Through this approach, we 
believe that researchers and practitioners will be able to acquire sig
nificant knowledge in a more straightforward and intuitive manner, 
since the interpretation of the results resembles the way of human 
decision-making by comparing similar cases (i.e., classes), as in case- 
based reasoning (CBR) process. 

4.4.1. Mantel Test 
To this regard, we make use of a multivariate statistical methodol

ogy, namely the Mantel test [24] that has been extensively applied in 
many scientific areas such as: health, ecology, biology, population ge
netics. The rationale of the approach is to evaluate the association 

between the corresponding positions of all pairs of observations from 
two dissimilarity matrices computed by either univariate or multivariate 
data. The procedure is further augmented with a randomization mech
anism based on the permutation of the rows and columns of one of the 
two dissimilarity matrices, to test the null hypothesis that the two 
dissimilarity matrices are uncorrelated. We have also to point out that 
the Mantel test has been used in software engineering: (a) to evaluate the 
difference between perspectives in the determination of the relative 
importance of impact analysis issues of software [33]; and (b) for the 
calibration of the analogy-based software cost estimation model [17]. 
An outline of the approach that we have used for applying the Mantel 
test, in our study, is described below:  

1 Each analysis element (i.e., box in Fig. 2) is represented by either a 
vector or a matrix, in which the rows correspond to the n classes of 
each project and columns comprise the metrics representing a spe
cific element (see Table 6). A simple concept is represented by a 
column vector (Table 6), e.g. TD Principal, the measurements can be 
represented in the following form TDPrincipal

T =

(TDPrincipalc1
,…,TDPrincipalcn

)
T. Regarding multifaceted concepts, e.g. 

the quality property of Size evaluated by two metrics (Lines of Code 
and Number of Properties, 3rd Level, Table 6), the measurements can 
be compiled in the form of a tabular matrix 
⎡

⎣
SIZE1c1 SIZE2c1

⋮ ⋮
SIZE1cn SIZE2cn

⎤

⎦

Table 6 
Analysis Element Representation  

Level Concept Element Representation Metrics 
1 TD 

Principal 
TD Principal Vector Total TD Principal 

1 TD 
Interest 

TD Interest Vector Total TD Interest 

2 TD 
Principal 

Types of TD 
Principal Issues 

Matrix TD Principal due to 
Understandability 
Issues 
TD Principal due to 
Security/Runtime 
Issues 
TD Principal due to 
Poorly Written Code 
TD Principal due to 
the Violation of 
Coding Standards 

2 TD 
Interest 

Maintainability 
Level 

Matrix Coupling, Cohesion, 
Complexity, Size 
Inheritance 

2 TD 
Interest 

Maintenance 
Effort 

Vector Average Number of 
Lines Changed 
between Commits 

3 TD 
Interest 

Coupling Matrix Message Passing 
Coupling 
Response for a Class 
Data Abstraction 
Coupling 

3 TD 
Interest 

Cohesion Vector Lack of Cohesion of 
Methods 

3 TD 
Interest 

Complexity Matrix Cyclomatic 
Complexity, 
Weighted Method per 
Class 

3 TD 
Interest 

Size Matrix Lines of Code, 
Number of Properties 

3 TD 
Interest 

Inheritance Matrix Depth of Inheritance 
Tree, Number of 
Children Classes  

5 ht***tps://github.com/AngelikiTsintzira/Technical-Debt-Management- 
Toolbox  

6 ht***tp://sdk4ed.se.uom.gr/  
7 ht***tps://sdk4ed.eu/ 
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where SIZE1ci and SIZE2ci represent the measurements of i class 
regarding the two metrics Lines of Code and Number of Properties, 
respectively. The followed approach provides us the ability to capture a 
relation between sets of metrics that quantify two concepts that can be 
either simple or multifaceted; whereas traditional univariate correlation 
analysis would be able to indicate the relationship between pairs of 
scalar metrics.  

2 From each analysis element we calculate a distance matrix for each 
pair (i, j) of n classes for a given project. For the case of TD Principal 
and TD Interest (first levels of hierarchies), the first step of the method 
involves the evaluation of two distance matrices, Distance(TDprinci

pal) and Distance(TDinterest) representing the distances between the 
pair of classes (i, j) of the two vectors (1st Level, Table 6). In the case 
of a multifaceted TD concept (e.g. quality property of Size, 3rd Level, 
Table 6), the distance matrix is evaluated based on the measurements 
of all the associated metrics (see Table 6). We note that dissimilar
ities between each pair of classes are evaluated on the standardized 
measurements ([0, 1]) to be immune to metrics’ range. For example, 
the investigation of the relation between TD Principal (1st Level) and 
the element of Size, described by two metrics (Lines of Code and 
Number of Properties) is based on distance matrices evaluated through 
the following formulae: 

aij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

TDPrincipalci
− TDPrincipalcj

)2
√

(2)  

bij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
SIZE1ci − SIZE1cj

)2
+
(
SIZE2ci − SIZE2cj

)2
√

(3)    

3 Then, we take separately for each project all possible combinations 
of analysis elements (i.e., pairs of boxes: one from the TD Principal 
and another from TD Interest hierarchies), and calculate the Mantel’s r 
correlation coefficient between the corresponding matrices.  

a for RQ1, we use the vectors of TD Principal and TD Interest of the first 
level 

b for RQ2.1, we use the vector of TD Principal, the matrix of Main
tainability Level and the vector of Maintenance Effort  

c for RQ2.2, we use the vector of TD Principal, the matrices of Coupling, 
Cohesion (the only vector), Complexity, Size, and Inheritance  

d for RQ3, we use the vector of TD Interest and the matrix of Types of 
TD Principal Issues 

We have also to note that due to the symmetrical nature of a distance 
matrix (see an example on Table 7), only the elements from the upper or 
lower triangle matrix are used. 

4.4.2. Statistical Inferential Process 
After the discovery of similarity patterns, the next critical issue is to 

investigate whether the observed phenomena can be generalized to the 

population of OSS projects. Given the fact that the case study of the 
paper is characterized as multiple (i.e., using many projects as sub
jects—see Section 4.2), there is an imperative need to adopt an appro
priate statistical inferential mechanism in order to derive conclusions 
regarding the population of OSS projects with similar characteristics. 
Towards this direction, an aggregated dataset comprising the Mantel’s 
correlation coefficients evaluated from the classes of each OSS project 
for paired analysis elements is constructed. For example, for the case of 
RQ2, the dataset can be expressed via a long-format matrix as presented 
in Table 8. As we can observe, each row of the matrix comprises the 
Mantel coefficient evaluated from the distance matrices of TD Principal 
and the alternative two aspects of TD Interest (Maintainability Level and 
Maintenance Effort) for a given project of our experimental setup. The 
goal is to examine the effects of aspects of TD Interest on TD Principal. For 
this reason, we use the Linear Mixed Effects (LME) modelling statistical 
technique [31] that is able to model simultaneously two types of effects: 
(a) the fixed and (b) the random effects. In the terminology of LME 
models, the term “fixed effect” is used to depict factors influencing the 
mean value of a response variable, whereas a “random effect” (i.e. Project 
in our setup) may have an impact on the variance of the response var
iable. The reason to control projects as a random effect is that our 
dataset consists of projects selected from an infinite population of 
projects. 

Regarding RQ2.1, our aim is to examine whether there is a difference 
between the 2nd Level Aspects of TD Interest on how they are related with 
the TD Principal. We essentially investigate which of the two aspects 
correlates better with TD Principal. This difference can be formally 
modeled as an effect of the factor “TD Interest Aspects” (with two discrete 
levels, namely Maintainability Level and Maintenance Effort) on the 
Mantel correlation in the presence of the project’s random effect. So, we 
actually consider the Mantel r as response variable while the type of 
aspect (fixed effect) and the project (random effect) are the two 
explanatory variables (Table 8). As far as the second goal of RQ2 con
cerns, which is the investigation of whether there are 3rd Level Aspects 
of TD Interest that are more related to TD Principal, a similar approach is 
followed. In this case, the repeated measures design is represented via a 
matrix, where the examined effect is the 3rd Level Aspect of TD Interest: 
Inheritance, Coupling, Cohesion, Complexity, and Size) with the same 
random effect, i.e. the Project. Finally, a similar process has been also 
applied for RQ3. The rest of the repeated measure designs is presented in 
the Appendix. 

5. Results 

In this section, we provide the answers to the RQs of this study. In 
Table 9 and Fig. 3, we present the descriptive statistics for the aspects of 
TD Interest (second and third level) and TD Principal (second level), 
respectively. 

5.1. Relation between TD Principal and Interest (RQ1) 

Mantel’s correlation coefficients (r) for each pair of TD Principal and 
TD Interest, as evaluated from the classes of each OSS project, are sum
marized in Fig. 4 ranging from weak (rmin = 0.271, ComNet) to very 
strong (rmax = 0.820, ComIO) correlation. The y-axis of Fig. 4, de
marcates the regions of “no”, “weak”, “moderate”, “strong”, or “very 
strong” relation [43], whereas the x-axis does not have a specific 

Table 7 
Distance-Matrix Example for TD Principal (1st Level) and Size Element of TD 
Interest  

Distance (TDPrincipal) Classes      
C1 C2 … Cn  

Classes C1 0 α12 … α1n  

C2 α21 0 … α2n  

… … … … …  
Cn αn1 … … 0 

Distance (TDInterest-Size) Classes      
C1 C2 … Cn  

Classes C1 0 b12 … b1n  

C2 b21 0 … b2n  

… … … … …  
Cn bn1 … … 0  

Table 8 
Repeated Measures Design (RQ2.1)  

Mantel r TD Principal Aspect of TD Interest Project 
r11 Total TD Principal Maintenance Effort Project 1 
r21 Total TD Principal Maintainability Level Project 1 
… … … … 
r1n Total TD Principal Maintenance Effort Project n 
r2n Total TD Principal Maintainability Level Project n  
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conceptual interpretation: it is just used for spreading projects in the 
full-width of the graph, to facilitate readability. Based on the evaluation 
of coefficients and their corresponding p-values, we can observe that 
there is noted a statistically significant correlation between the distance 
matrices of TD Principal and TD Interest for the whole set of the examined 
projects implying that classes with similar levels of TD principal have 
similar levels of TD interest. Based on the scales presented in Fig. 4, for 
80% of the projects the relation between TD Principal and TD Interest is 
at least moderate. 

In the second step of the analysis, an LME model is fitted to inves
tigate the strength of the observed association to the population of OSS 
projects. The parameter of the LME model fitted on the accumulated 
results demonstrates a mean value of 0.540 signifying a moderate cor
relation between TD Principal and TD Interest aspects. 

Classes with similar levels of TD Principal tend to have similar levels 
of TD Interest. The strength of this relation is at least moderate and 
statistically significant. 

5.2. Relation between TD Principal and Aspects of TD Interest (RQ2) 

Comparing 2nd-level Aspects of TD Interest (RQ2.1). Given the relation 

between principal and interest, we further drill down to investigate if 
either of the second-level aspects of interest, Maintainability Level 
(structure) or Maintenance Effort (history) presents a higher effect on 
this relation. Fig. 5 presents the distributions of the correlation co
efficients between TD Principal and the two aspects of TD Interest 
(Maintainability Level and Maintenance Effort), in which each asterisk 
denotes the sample coefficient for an examined project of the case study. 
The p-values of the tests revealed statistically significant correlations for 
all pairwise comparisons between TD Principal and both aspects of TD 
Interest. Regarding the strength of the association for the Historical 
aspect of TD Interest (i.e., Maintenance Effort), the coefficients range, 
again, from weak (rmin = 0.160, for Xerces2Java) to strong (rmax =

0.700, for ComJelly), whereas the results are similar for the Structural 
aspect of TD Interest (rmin = 0.230, for ComIO,rmax = 0.610, for 
ComJelly). 

To investigate the effect of the Aspects of TD Interest on the evaluated 
correlation coefficients, we fitted again, an LME model. The model did 
not reveal a statistically significant main effect of the Aspects of TD In
terest on the examined coefficients (F = 0.415, p = 0.536) denoting that 
the two aspects are correlated to TD Principal to the same extent. The 
parameter estimates for the population mean values of correlation are 
0.384 and 0.418 for Maintainability Level and Maintenance Effort aspects, 
respectively. Given the fact that both aspects of interest have merit, and 
do not differ significantly, it is important to investigate if the aggregated 
measure of TD Interest is more related to TD Principal compared to the 
association of the two aspects (in isolation) to TD Principal. The results 
suggest that TD Principal seems to present a higher correlation to the 
aggregated TD Interest metric (1st level of the TD Interest hierarchy) 
compared to the aspects of TD Interest (second level of hierarchy). 

To investigate the generalizability of the aforementioned results, we 
fitted an LME model incorporating the fixed effect of the factor Hierarchy 
Level (1st Level/2nd Level). Based on the results of the previous model (i. 
e. insignificant differences between the two Aspects of TD Interest), we 
have to clarify that the category Second Level aggregates the correlation 
coefficients evaluated from both Maintainability Level and Maintenance 
Effort aspects of TD Interest. The model revealed a statistically significant 
main effect of the factor Hierarchy Level on the mean values of the cor
relation coefficients (F = 5.927, p = 0.025). 

Interpreting the parameter estimates of the LME model (see 
Table 10), the aggregated measure of TD Interest presents a higher mean 
correlation value to TD Principal compared to the two aspects in isola
tion. The negative sign of the parameter estimate for the Second Level of 
TD Hierarchy implies that the mean correlation coefficient is 0.139 lower 
than the corresponding value evaluated from the First Level of TD Hier
archy (0.540). For the rest of this study, we do not perform any analysis 
on the 2nd level of TD Interest. 

The aggregated measure for TD Interest seems to be a more repre
sentative metric for capturing the divergence of classes in terms of 
their TD principal compared to the individual Historical or Structural 
metrics 

Comparing 3rd-level Aspects of TD Interest (RQ2.2). In this sub-section 
we investigate whether there are certain structural aspects of TD Interest 
(3rd level of the TD Interest hierarchy), that are more related to TD 
Principal (RQ2.2). The main motivation for this, as explained in Section 
2.2, is the fact that structural properties are directly linked to actionable 
results; e.g., a tentative importance of lack of cohesion, can underline 
the importance of conforming to the Single Responsibility Principle 
[25]. 

Fig. 6 summarizes the Mantel’s correlation coefficients (r) evaluated 
from the classes of each OSS project based on the dissimilarities for each 
pair of TD Principal and maintainability metrics (Inh: Inheritance, Com: 
Complexity, Coh: Cohesion, Cpl: Coupling). The results suggest that the 
strength is heavily dependent on the type of maintainability predictor, 
ranging from statistically significant very weak correlation (e.g. for Inh 

Table 9 
Descriptive Statistics for TD Interest and its Aspects  

Metric N M SD Мin Мax  
TD Interest 3599 59.12 114.62 0.92 1698.10  
Aspect of TD 

Interest 
Metric N M SD Мin Мax 

Maintenance 
Effort – 
Historical 
Change 

LOC 3599 46.04 83.90 0.20 1401.00 

Maintenance 
Difficulty – 
Inheritance 
(Inh) 

DIT 3600 2.17 1.40 1 9 

Maintenance 
Difficulty – 
Inheritance 
(Inh) 

NOCC 3600 0.76 2.55 0 41 

Maintenance 
Difficulty – 
Coupling (Cpl) 

MPC 3600 41.00 106.17 0 2531 

Maintenance 
Difficulty – 
Coupling (Cpl) 

RFC 3600 31.68 41.43 0 532 

Maintenance 
Difficulty – 
Coupling (Cpl) 

DAC 3600 0.29 1.05 0 20 

Maintenance 
Difficulty – 
Cohesion (Coh) 

LCOM 3389 75.27 356.25 0 8759 

Maintenance 
Difficulty – 
Complexity 
(Com) 

CC 2790 1.51 1.27 1 22.57 

Maintenance 
Difficulty – 
Complexity 
(Com) 

WMPC 3600 9.17 14.45 0 276 

Maintenance 
Difficulty – Size 
(Size) 

SIZE1 3600 56.50 91.80 1 1361 

Maintenance 
Difficulty – Size 
(Size) 

SIZE2 3600 11.12 17.16 0 238 

Note-1: N refers to the number of classes in which the metric was calculated (e. 
g., CC cannot be calculated for interfaces / abstract classes). M, SD, Min Max 
stand for: mean, standard deviation, minimum and maximum of the metric. 
Note-2: The range of values for all the metrics that represent the aspects of TD Interest 
is [0, +∞) and TD Interest itself is measured in euros, using as Unit Cost of Main
tenance the 1.8324 dollars per line of code (see [8]) 
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predictor, rmin = 0.06, ComMath) to strong correlation (e.g. for Size 
predictor, rmax = 0.671, HTTPClient). Generally, Size seems to be the 
most related maintainability predictor of TD Interest to TD Principal. In 
contrast, Inheritance presented low coefficients that are statistically 
significant for 4 out of 10 cases. 

The findings of the LME for the accumulated results present a sta
tistically significant coefficient, demonstrating a significant main effect 
of the maintainability predictors on the response variable, F = 13.061 
and p < 0.001. The parameter estimates of the model (Table 11) reveal 
that the mean value of correlation between TD Principal and Inheritance 
(reference category of the FITTED model) is very weak 0.061 (rInh =

bIntercept = 0.061) and significantly lower than the corresponding popu
lation mean values of Coupling (rCpl = bIntercept + bCpI = 0.061 + 0.381 =

0.442), Cohesion (rCoh = bIntercept + bCoh = 0.061+ 0.297 = 0.359), 
Complexity (rCom = bIntercept + bCom = 0.061+ 0.306 = 0.367), and Size 
(rSize = bIntercept + bSize = 0.061+ 0.439 = 0.500). 

The post-hoc analysis through Tukey’s HSD test signifies statistically 
significant differences (p < 0.001) in all pairs between Inheritance and 
the other four quality properties (Fig. 7—cases in which the error bar 
does not cross the vertical dashed line on 0.0). Regarding the Size, there 
is a statistically significant difference with Complexity (p = 0.030) and 
Cohesion (p = 0.017), but no difference compared to Coupling (p =

0.702). Therefore, we consider the strength of the relation of Coupling 
to TD Principal, similar to the strength of the relation between Size and 
TD Principal. Finally, the rest pairwise comparisons do not indicate 
statistically significant differences. 

Fig. 3. Aspects of TD Principal Frequency 
Note: Aspects of the TD Principal are represented as counts of detected issues in all projects. Code Smell Tags that are not presented in Fig. 3 (compared to Table 3) have zero 
instances in our dataset. 

Fig. 4. Mantel’s coefficients between Principal and Interest  
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Size and Coupling are the maintainability-related properties that are 
most closely related to TD Principal, followed by Cohesion and 
Complexity. 

5.3. Relation between Aspects of TD Principal and TD Interest (RQ3) 

In this section, we present the results on the relation between aspects 
of TD Principal and TD Interest (RQ3). We remind that the aspects of TD 
Principal correspond to the four tag categories (Understandability, 

Poorly Written Code, Security/Runtime, and Coding Standards), that 
group the nineteen tags of code smells (see Section 3.1). Subsequently 
we evaluate the correlation of those four aspects to the first level of the 
TD Interest Hierarchy. TD Principal aspects present statistically significant 
correlations to TD Interest for the majority of the examined projects (37 
out of 40 cases—see Fig. 8) ranging from weak (rmin = 0.137, Com
Collections) to strong (rmin = 0.699, ComJelly). Regarding the LME 
model incorporating the factor aspects of TD Principal, the findings did 
not reveal a statistically significant main effect on the examined co
efficients (F = 1.126, p = 0.356). 

All four categories of code smells (aspects of TD Principal) present a 
moderate relation to TD Interest. 

6. Discussion 

In this section we discuss the main findings of this paper, first 
interpreting the obtained results, and then providing useful implications 
for researchers and practitioners. 

Fig. 5. Distributions of coefficients: TD Principal and Aspects of TD Interest (Maintainability Level / Maintenance Effort)  

Table 10 
LME - Main Effect of Factor Hierarchy Level of TD Interest   

b SE Df t p 
First Level 0.540 0.053 19 10.248 < 0.001 
Second Level -0.139 0.057 19 -2.435 0.025 

Note: b, SE, df, t, p stands for parameter estimations, standard error of the es
timates, degrees of freedom, t-statistic and p-value, respectively. The reference 
category for factor Hierarchy Level of TD Interest is First Level. 

Fig. 6. Distributions of Mantel’s coefficients between TD Principal and Maintainability Predictors  
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Interpretation of results. The goal of this study is to explore the 
relation between TD Principal and Interest, as well as the relation be
tween the aspects of both concepts. First, we have been able to provide 
empirical evidence on the existence of a relation between principal and 
interest. Therefore, although no causal effect can be assumed between 
principal and interest, we have provided the first well-based indications 
on the existence of a relation between interest and principal: classes with 
similar levels of TD Principal tend to produce similar levels of TD In
terest. We note that identifying the form of the relationship (linear or 
any other type) would require a different kind of analysis. Thus, the 
existence of a relation similar to the one of economics still needs 
investigation, probably through a different study setup that can assess 
causality. 

We have also unveiled a relation between TD Principal and 4 (out of 
5) 3rd level aspects of TD Interest (namely: size, coupling, cohesion, and 

Table 11 
LME - Main Effect of Aspect of TD Interest   

b SE df t p 
Intercept 0.061 0.062 30 0.988 0.331 
Complexity 0.306 0.063 30 4.844 < 0.001 
Cohesion 0.297 0.063 30 4.705 < 0.001 
Coupling 0.381 0.063 30 6.021 < 0.001 
Size 0.439 0.063 30 6.947 < 0.001 

Note: b, SE, df, t, p stands for parameter estimations, standard error of the es
timates, degrees of freedom, t-statistic and p-value, respectively. The reference 
category for factor maintainability predictor of TD Interest is Inh. 

Fig. 7. Post-hoc analysis for LME model (main effect of Maintainability Predictors of TD Interest)  

Fig. 8. Distributions of Mantel’s coefficients between Tag Categories of code smells and TD Interest  

A. Ampatzoglou et al.                                                                                                                                                                                                                          



Information and Software Technology 128 (2020) 106391

14

complexity). This relation appears to be stronger for size and coupling, 
and less strong for cohesion and complexity:  

• Size: The relation between TD Principal and size (i.e., classes of 
similar size tend to have similar TD Principal) is intuitive in the sense 
that the more lines of code exist in the system, the more rules are 
expected to be violated. However, in most cases, this is not an 
actionable result as refactoring only for the sake of reducing size is 
very rarely done. In contrast, the size of software presents a linear 
growth over time; thus, it is of paramount importance that new code 
inserted into the system has as few rule violations (TD principal) as 
possible. Nevertheless, this observation provides two interesting 
implications: (a) TD Principal normalization (by size) makes sense 
for comparing classes of different sizes; and (b) the identification of 
design hotspots (in terms of TD Principal) should not be performed at 
a system-wide, but between similar (in terms of size) neighborhoods 
of classes; in the sense that artifacts of different size will not be 
directly comparable.  

• Coupling, Cohesion and Complexity: The relation of TD Principal with 
these three quality attributes (Aspects of TD Interest—i.e., classes 
with similar TD Principal tend to have similar levels in these three 
quality properties), is indirect: we conjecture that developers who 
pay attention to software design (e.g., improved modularity, or low 
complexity) are also careful not to violate source code programming 
rules. The fact that coupling is more strongly related to TD Principal 
compared to cohesion and complexity denotes that a property 
reflecting the design rather than the implementation, is more 
important for maintenance. We remind that coupling, as calculated 
in this study (i.e., MPC, RFC, and DAC), can be calculated from 
design level artifacts (e.g., UML class or sequence diagrams); 
whereas complexity (CC—count of iteration and selection state
ments) and cohesion (LCOM—attributes used in method bodies) can 
only be captured by parsing source code artifacts. 

Finally, regarding the specific aspects of TD Principal, the results 
suggest that the four aspects do not differ statistically significantly, in 
terms of the TD Interest that they are associated with. We would expect 
that TD interest (in the way that it is assessed in this study) as a struc
tural property, is conceptually closer to two of the TD Principal aspects: 
code understandability and design practice violations. However, the 
other two TD Principal aspects (coding standards and run-time and se
curity violations) seem equally related to TD interest. This is not intui
tive especially for the relation between run-time and security violations 
and TD interest; a study investigating a possible causality between the 
two would be particularly interesting. 

Implications to Researchers and Practitioners. Regarding practi
tioners, there has always been demand for an accurate calculation of 
interest to drive the prioritization of repaying TD. While there are 
relatively mature ways to calculate TD principal (mostly through source 
code analysis), TD interest is more elusive as it depends on knowing 
future changes. The establishment of a relation between TD principal 
and interest, implies that TD principal can be safely used for TD prior
itization: paying back the TD items with the highest principal will very 
likely also reduce the TD interest paid in the system. In practice, prior
itization of TD items is required whenever a development team receives 
an intractable number of refactoring suggestions from a TDM tool 
(which is the usual case when large rule-sets are applied on large soft
ware systems). Despite the fact that practitioners could either prioritize 
based on TD Principal or TD Interest; in fact, they have long been 
prioritizing TD items with large principal. Our results provide empirical 
evidence that this is a sound practice, since the amount of TD Principal is 
related to the amount of TD Interest, in the sense that classes with similar 
levels of TD Principal tend to have similar levels of TD Interest. However, 
this observation does not downgrade the significance of TD Interest 
assessment: we have also provided evidence that especially for TD 
repayment, emphasis should be placed on improving specific quality 

properties (i.e., coupling and size), which have proven to be linked to 
the concentration of more TD Principal. Additionally, based on the 
findings of this study, some interesting future work opportunities have 
been identified. Therefore, we encourage researchers to:  

• Study of causality. The establishment of a correlation between TD 
interest and principal and their various aspects, begs the question 
whether causality also exists between them. This is especially 
interesting for third-level aspects of interest and second level aspect 
of principal. Does complexity, for example, cause understandability 
rules violations? Does low cohesion and high coupling cause poorly 
written code? Such a causal study could be designed and performed 
through a controlled experiment, in which the researchers would 
control the amount of TD Principal in several variations of a system, 
and seek the actual maintenance time (TD Interest) for different 
amounts and types of TD Principal. The necessity (and difficulty) of 
targeting causation, instead of correlation has been discussed in 
detail in Dagstuhl 2014 on "Software Development Analytics" [44, 
45]. 

• Replicate and Generalize. The results of this study have been ob
tained by studying well-known and high-quality Java projects. 
Therefore, there is a need to replicate the case study in other lan
guages and projects of different levels of quality, so as to ensure the 
generalizability of our results. Similarly, the results need to be 
confirmed in different programming paradigms (other than object- 
oriented). We note that such a study, supposing that both exten
sions are made, would require the addition of two new factors 
(programming language and paradigm) and an inferential analysis 
that would target the exploration of the effect of these two factors in 
the identified relations 

Extend the concepts of TD Principal and TD Interest to other types 
of TD. By considering that this study limits the calculation of TD to code, 
we believe that an interesting extension would be towards other types of 
TD, such as architecture, requirements or documentation TD. For 
instance, requirements debt could concern costs such as the delay of 
developing features, whereas architecture debt could involve the 
impossibility to evolve the system, or the effect on other quality attri
butes or even on the social aspects of the organization. Nevertheless, 
given the level of abstraction of these concepts, we see this research 
work more qualitative (e.g. involving experts) than quantitative. 

7. Threats to validity 

In this section, we discuss potential threats to the validity of our case 
study: construct validity, reliability, and external validity [34]. Internal 
validity is not considered, since causal relations are not in its scope. 

Construct Validity is related to the way in which the selected phe
nomena are observed and measured. In this study the investigated 
concepts are TD Principal and TD Interest. On the one hand TD Principal 
is quantified through SonarQube. SonarQube is the most frequently used 
tool for measuring TD Principal [3, 21], in the sense that is the most 
widely used in research and practice. Although SonarQube is an estab
lished tool, it focuses on code TD, neglecting other types of TD, like 
architecture debt, requirements debt, etc. According to Martini et al. 
currently in industry static analyzers (such as SonarQube) are used to 
analyze the source code in search of TD. Only in few cases out of the 
respondents in their survey (15 companies) practitioners built their own 
metrics tools for checking (language-specific) rules or patterns that can 
warn the developers of the presence of TD [26]. In a similar discussion, 
Yli-Huumo et al. [40] discuss SonarQube as the mostly used tool for 
TDM in the eight development teams that they have involved in their 
case study. Despite the identified limitations, especially in the level of 
Architectural Technical Debt (ATD), SonarQube is considered as 
extremely useful for code TD identification, monitoring, measurement 
and prioritization. Additionally, although SonarQube could be 
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configured to provide more accurate results (e.g., change remediation 
times), such a practice is not prominent in the literature, where re
searchers do not perform any re-configuration of the tool [13], and [36]. 

On the other hand, in the literature there is no established way to 
measure TD Interest. This is due to the fact that an accurate measurement 
of interest would require the simultaneous maintenance of two software 
solutions: an optimal and an actual one, and the anticipation of future 
maintenance activities. Besides the inability to forecast future changes, 
such an approach is unrealistic for two reasons: (a) there is no way to 
define a universally accepted optimal system, and (b) it is cost inefficient 
to maintain two real systems just aiming to accurately measure technical 
debt interest. According to industrial practitioners, acknowledge that 
there are no indicators that show the amount of interest paid or pre
dicted if the refactoring. Research prototype tools for interest assessment 
are not employed in practice yet and should be integrated to provide 
overall indicators to provide help to the stakeholders to estimate and 
prioritize TD. Thus, the TD research community shall intensify their 
work on introducing such tools and indicators [26]. Therefore, as the 
current state-of-the-art stands TD Interest can only be assessed through 
proxies. In this study, we selected metrics that assess maintainability as a 
proxy of interest. More specifically, we selected ten object-oriented 
metrics (grouped in 5 categories/aspects of TD Interest) measured at 
source code, although, in literature, maintainability has been linked to 
various metrics. Metrics’ selection was based on empirical evidence in 
the literature suggesting that a combination of these metrics is the 
optimal maintainability predictor [32]. The model for synthesizing the 
aforementioned values in a unified value for TD Interest relies on solid 
mathematical calculations, given the assumption that maintenance 
effort is inversely proportional (linearly) to maintainability. This 
assumption, although it cannot be validated without a controlled 
experiment, relies on previous studies [38, 42] and is considered as 
intuitive by the authors of this paper. 

Additionally, we need to note that both TD Principal and TD Interest 
are measured at source code level. However, TD is a wider concept that 
represents inefficiencies at the whole software development lifecycle, 
and therefore the source code analysis is not comprehensively studying 
the phenomenon. Thus, our results are not representative of TD holis
tically as a phenomenon, but only of a subset of it. Nevertheless, code TD 
is the most studied type of technical debt in the state-of-research [2] and 
one of the most important in the industry [5]. Finally, with respect to 
RQ3, we note that the results heavily rely on the classification schema 
that we have proposed for Aspects of TD Principal. Although the schema 
has not been validated and relies on the expert opinion of the senior 
researchers of this study, it is developed in a systematic way. Thus, also 
given the fact that such an endeavor could not be conclusive, we believe 
that it serves the goal of this study, since it is explicitly presented and 
acknowledges all of its inherent limitations. 

With regard to reliability, we consider any possible researchers’ bias, 
during the data collection and data analysis process. The design of the 
study, concerning data collection, does not contain threats, since all data 
are automatically extracted by tools, without any subjective configura
tion. Moreover, with respect to the data analysis process, to mitigate any 
potential threats to reliability, three researchers were involved in the 
process, aiming at double checking the work performed and thus 
reducing the chances of reliability threats. Furthermore, the detailed 
case study protocol presented in Section 4 enables the repetition of the 
study, as well as the provision of a replication package8. However, we 
need to note that the clustering of code smells under specific tag cate
gories is subjective and could have been differently performed. Never
theless, we believe that the clustering is intuitive and forms a well- 
justified decision. 

Concerning external validity, a potential threat to generalization is 

the possibility that performing the study on different projects of 
different languages might affect the retrieved correlations. However, we 
believe that the selected projects, given their size and complexity, 
represent a realistic real-world system. Additionally, the results of the 
study are not applicable to non-object-oriented systems, in the sense that 
TD Interest in such systems could not be assessed through properties such 
as inheritance, coupling and cohesion, which are applicable only in OO 
software modules. Finally, we note that since the interpretation of the 
results is based solely on the understanding of the authors on the TD 
concepts, and not through an additional qualitative study with industrial 
stakeholders, they cannot be generalized to an industrial context, 
without additional validation. 

8. Conclusions 

This study aims to investigate the interrelation between TD Principal 
and TD Interest from two perspectives: (a) to understand the underlying 
relations between the two concepts, and (b) to provide a way for effi
cient TD management. To achieve these goals, we have performed a case 
study on 3600 classes retrieved from 10 Apache projects. The concepts 
of TD Principal and TD Interest have been decomposed to multiple aspects 
that assess different views of the concepts. Given the hierarchical 
structure of the concepts (TD Principal and TD Interest) the Mantel test 
has been used for the examination of their relation and Linear Mixed 
Effects models for assessing the generalizability of the obtained results. 
The results of the analysis suggested that TD Principal is related to TD 
Interest, and that TD Principal is more closely related to the interest as
pects of size and coupling, followed by cohesion and complexity. 
Regarding TD Principal aspects, the one that appears to be more strongly 
interrelated to higher levels of interest is code smells, whereas by further 
focusing on code smells, we have collected evidence that smells that 
hinder source code understandability are the ones that are more urgent 
to resolve in the sense that they are related to higher levels of TD Interest. 
Given the aforementioned outcomes, various implications for re
searchers and practitioners have been drawn. In particular, regarding 
practitioners we have suggested a strategy for technical debt prevention, 
repayment, and prioritization, based on technical debt interest amount. 
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