
Information and Software Technology 128 (2020) 106391

Available online 13 August 2020
0950-5849/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Exploring the Relation between Technical Debt Principal and Interest: An
Empirical Approach

Areti Ampatzoglou a, Nikolaos Mittas b, Angeliki-Agathi Tsintzira c, Apostolos Ampatzoglou c,*,
Elvira-Maria Arvanitou c, Alexander Chatzigeorgiou c, Paris Avgeriou a, Lefteris Angelis d

a Department of Computer Science, Institute for Mathematics, Computer Science and AI, University of Groningen, Netherlands
b Department of Chemistry, International Hellenic University, Kavala, Greece
c Department of Applied Informatics, University of Macedonia, Greece
d School of Informatics, Aristotle University of Thessaloniki, Greece

A B S T R A C T

Context: The cornerstones of technical debt (TD) are two concepts borrowed from economics: principal and interest. Although in economics the two terms are related,
in TD there is no study on this direction so as to validate the strength of the metaphor.
Objective: We study the relation between Principal and Interest, and subsequently dig further into the ‘ingredients’ of each concept (since they are multi-faceted). In
particular, we investigate if artifacts with similar levels of TD Principal exhibit a similar amount of TD Interest, and vice-versa.
Method: To achieve this goal, we performed an empirical study, analyzing the dataset using the Mantel test. Through the Mantel test, we examined the relation
between TD Principal and Interest, and identified aspects that are able to denote proximity of artifacts, with respect to TD. Next, through Linear Mixed Effects (LME)
modelling we studied the generalizability of the results.
Results: The results of the study suggest that TD Principal and Interest are related, in the sense that classes with similar levels of TD Principal tend to have similar
levels of Interest. Additionally, we have reached the conclusion that aggregated measures of TD Principal or Interest are more capable of identifying proximate
artifacts, compared to isolated metrics. Finally, we have provided empirical evidence on the fact that improving certain quality properties (e.g., size and coupling)
should be prioritized while ranking refactoring opportunities in the sense that high values of these properties are in most of the cases related to artifacts with higher
levels of TD Principal.
Conclusions: The findings shed light on the relations between the two concepts, and can be useful for both researchers and practitioners: the former can get a deeper
understanding of the concepts, whereas the latter can use our findings to guide their TD management processes such as prioritization and repayment.

1. Introduction

Technical Debt (TD), originally introduced in 1992 [11], is a meta
phor that represents the impact of shortcuts taken during development,
usually to meet business goals, such as limited time or budget [19] on
maintainability. The cornerstones of the TD metaphor are two terms
borrowed from the concept of debt in finance: principal and interest. TD
Principal is the effort required to eliminate inefficiencies in the current
design or implementation of a software system [3]; typical examples of
such inefficiencies are code and design smells. On the contrary, TD In
terest is the additional development effort required to modify the soft
ware (adding new features or fixing bugs), due to the presence of such
inefficiencies [3]. The assessment of principal and interest depends on
the type of TD (e.g., code, design, testing TD). The scope of this work is

limited to TD on the source code, which is the most studied type of TD in
the literature [2], the most supported by tools [2], and one of the most
important in industry [5]. For simplicity, in the rest of the paper when
we refer to TD, we imply code TD. For assessing TD Principal and TD
Interest:

• On the one hand, principal of TD is relatively straightforward to
quantify: one needs to specify the relevant types of code in
efficiencies (e.g. understandability issues, violations of coding
practices) and subsequently identify them in code, usually through
automated analysis tools. In most approaches, principal is subse
quently quantified by summing up the estimated effort to fix each
individual inefficiency. As an example, SonarQube [3,21] calculates
TD Principal as the sum of the time required to fix code smells, which

* Corresponding author.
E-mail addresses: areti.ampatzoglou@rug.nl (A. Ampatzoglou), nmittas@chem.ihu.gr (N. Mittas), angeliki.agathi.tsintzira@gmail.com (A.-A. Tsintzira), a.

ampatzoglou@uom.edu.gr (A. Ampatzoglou), earvanitoy@gmail.com (E.-M. Arvanitou), achat@uom.edu.gr (A. Chatzigeorgiou), paris@cs.rug.nl (P. Avgeriou),
lef@csd.auth.gr (L. Angelis).

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2020.106391
Received 9 May 2020; Received in revised form 9 August 2020; Accepted 10 August 2020

mailto:areti.ampatzoglou@rug.nl
mailto:nmittas@chem.ihu.gr
mailto:angeliki.agathi.tsintzira@gmail.com
mailto:a.ampatzoglou@uom.edu.gr
mailto:a.ampatzoglou@uom.edu.gr
mailto:earvanitoy@gmail.com
mailto:achat@uom.edu.gr
mailto:paris@cs.rug.nl
mailto:lef@csd.auth.gr
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2020.106391
https://doi.org/10.1016/j.infsof.2020.106391
https://doi.org/10.1016/j.infsof.2020.106391
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106391&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 128 (2020) 106391

2

map to different aspects of TD Principal (e.g., Coding Standards,
Understandability)—for more details see Section 3.1.

• On the other hand, quantifying TD Interest is more difficult, since an
accurate calculation would require comparing the current version of
a system with a zero-TD version, with respect to their difference in
maintenance effort [1]. Of course, such a debt-free version does not
exist and would be unrealistic to create in a real-world setting. In
most cases, TD interest is quantified indirectly using proxies for the
two core aspects of TD Interest: (a) maintainability (e.g. complexity,
coupling, cohesion, size) reflecting the difficulty to make changes;
and (b) actual maintenance effort, based on historical data (e.g. LOC
modified per revision)– see Section 3.2.

In economics, TD Interest and TD Principal are related through the
interest rate: interest is calculated as a percentage of a loan (principal),
paid to the lender periodically for the privilege of using that money.
However, in the technical debt literature, the term interest rate has not
and cannot be defined: according to Schmid [35], it is not possible to
relate principal directly to an interest rate for a given interest period.
That is because the actual interest rate depends on the specific mainte
nance activities performed and these cannot be determined a priori. To
the best of our knowledge, there is currently no approach to relate TD
Principal and Interest. Clarifying the relation between principal and in
terest would further validate the strength of the TD metaphor in soft
ware development and maintenance. More importantly, this relation can
be practically used in estimating TD indices, but also managing indi
vidual TD items. For example, if a certain aspect of TD Principal, such as
a specific type of code smell, incurs more interest compared to others,
then it should be ranked higher through: preventing the associated code
smells, prioritizing the refactorings of those smells, and eventually
repaying them with refactoring applications.

According to Eisenberg [12], Lockheed Martin is monitoring TD, by
using an excel sheet, in which class names are colored based on their
perceived levels of technical debt. Such an approach serves two pur
poses: (a) ranking of classes with respect to their levels of TD, and (b)
grouping classes into groups of similar TD. In this paper, we build upon
the rationale of such an approach for TD monitoring, by investigating if
artifacts with similar levels of TD Principal have similar levels of TD
Interest. More specifically, we investigate if there is a relation: (a) be
tween TD Principal and TD Interest; and (b) between the aspects of TD
Principal and TD Interest. To achieve the aforementioned goals and by
taking into consideration the multifaceted nature of the examined con
cepts, we employ the Mantel test [24]. The main benefit of using the
Mantel test, compared to a traditional correlation analysis, is that it
offers the opportunity to study the relationship of concepts that can be
decomposed into aspects (in our case TD principal and interest), in a
hierarchical manner. Since this study focuses on exploring the relations
between TD concepts and their aspects, we believe that the Mantel test is
more appropriate than traditional correlation, which would be able to
accurately answer only goal (a). More details for the Mantel test are
provided in Section 4.4.1. In addition, we have performed Linear Mixed
Equation (LME) modelling to investigate the extent to which the ob
tained results are not affected by the random effect of project selection,
but they are due to the examined factors and parameters; this supports
the generalizability of the results. The main findings of the study vali
date the relation between TD Principal and TD Interest (illustrating that
classes with similar levels of TD Principal tend to have similar levels of
TD Interest), and that certain quality properties (e.g., coupling and size)
should be prioritized while ranking refactoring opportunities. The rest of
the paper is organized as follows: Section 2 provides an overview of
related work, in Section 3, we present the background information that
is required for understanding underlying concepts. In Section 4, the case
study design is overviewed. The results are presented in Section 5, and
discussed in Section 6. Threats to validity are presented in Section 7,
whereas Section 8 concludes the paper.

2. Related work

The goal of this section is to present: (a) works aiming to connect TD
Principal to TD Interest—see Section 2.1; and (b) studies that focus on
the quantification of TD Interest—see Section 2.2. We note that we do
not discuss works on calculating TD Principal, since it is considered a
straightforward task: According to Alves et al. [2], the principal is
related to the effort / cost to eliminate the debt from a given system or
artifact. Current software analysis tools offer estimates of TD Principal
based on counts of detectable violations (e.g., SonarQube, CAST, Squore,
etc.).

2.1. Relation between TD Principal and Interest

In the literature, we have identified five studies that aim at exploring
the relation between TD Principal and Interest. Table 1 outlines the
studies, by presenting the TD Principal / Interest assessors, and the main
conclusion of each study. Next, we present these studies in detail, and
compare them against our study.

Zazworka et al. [41], compare the similarities and differences among
four approaches for TD identification, namely modularity violations,
grime buildup, code smells and automatic static analysis. Given the fact
that there are plenty of tools that can automatically detect a number of
source code anomalies, the study considers four main techniques for TD
detection, selected primarily by the criterion of authors’ previous
experience. The study aims at investigating if these approaches result in
pointing out the same set of problematic issues. Moreover, the authors
explore the extent to which the four techniques point to instances with
high TD Interest. Since interest (i.e., the probable future cost of not fixing
the debt) is regarded as difficult to detect and measure, the authors
select to use two interest indicators, i.e., defect-proneness and
change-proneness. The selection of the proxies has been made among a
number of interest indicators, based on their correlation with prob
lematic code manifestation and future maintenance cost. The authors
conduct a case study, where they implement the four techniques on
Apache Hadoop software. Their results show that: (a) different tech
niques identify different TD issues, (b) classes identified with high TD,
with the use of modularity violations and code smells, seem to be more
defect-prone, while modularity violations are strongly related to
change-prone classes. Zazworka et al. [41] use four different approaches
to TD identification and focus on defect-proneness and
change-proneness as TD interest indicators, as their goal is the

Table 1
TD Principal – TD Interest Relation

Ref. TD Principal
Assessor

TD Interest Assessor Main Outcome

[10] Modularity
anomalies as
index of TD

Maintainability
(expressed as stability) as
a main characteristic
related to TD interest

Improvement of
modularity is related to
important benefits in
terms of stability, and
lead to the reduction of
TD interest

[16] Architecture
roots (flawed
structures)

Coupling and Cohesion
(indicating higher
maintenance effort)

TD items incur high
maintenance penalties

[18] SQALE method Structural proxies (quality
metrics)

Some quality metrics are
positively related and
others are negatively
related to TD principal

[23] Coupling
between
components

Defect-related activity Highly-coupled
components are more
prone to defects, and
costlier to maintain

[41] Modularity
Violations

Defect Proneness
Change Proneness

Classes with more
modularity violations
and code smells, are
more defect- and change-
prone

A. Ampatzoglou et al.

Information and Software Technology 128 (2020) 106391

3

comparison among the different methodologies. In our work, as
mentioned earlier, we opt to focus on one TD principal estimation
methodology, while we propose a more detailed approach of TD interest
estimation, based on well-established maintainability metrics.

Moreover, Conejero et al. [10] perform an empirical study aiming to
evaluate if modularity anomalies at requirements level affect main
tainability attributes and therefore increase system’s interest. The study
is based on a previously established framework that uses modularity
metrics to identify and quantify modularity anomalies. A set of metrics is
also used to assess the system’s stability, as a particular maintainability
attribute. The authors regard the presence of crosscutting concerns in a
system as a negative effect on modularity, which in turn is considered as
a significant index of TD [2]. Modularity violations are expected to raise
interest, given the fact that they may affect different quality attributes
and hence cause negative impact on the system’s quality. The paper
attempts to prove the relation between modularity anomalies at the
early stages of software development, i.e., the requirements level, with
software maintainability—with regard to stability. Since maintain
ability is deemed a main contributor to TD Interest, if the aforementioned
relation is proven, then modularity violations can be linked to interest
escalation. The study is performed on three different industrial appli
cations. The results suggest the existence of a relationship between the
Degree of Crosscutting properties, as a measure of modularity, and the
stability of a certain feature. Therefore, the authors conclude that
improvement of modularity could deliver important benefits in terms of
stability, enhancing the maintainability of the system and lead to the
reduction of TD Interest. Compared to our study, Conejero et al. [10]
focus on modularity anomalies, as indicator of its quality, while they do
not explicitly refer to principal. Also, they refer to stability as a main
tainability attribute, whereas our work considers: inheritance, coupling,
cohesion, complexity and size, as maintainability-related properties.

Additionally, Kosti et al. [18], explore the correlation between: (a)
structural proxies (i.e., quality metrics); and (b) monetized values using
the SQALE method, by conducting a case study on a set of 20 OSS pro
jects. The results of the study suggest that a model of seven structural
metrics, quantifying different aspects of quality (i.e., coupling, cohesion,
complexity, size, and inheritance) can accurately estimate TD principal
as appraised by SonarQube. More specifically, two coupling metrics
(MPC and MOA) and one cohesion metric (LCOM) are positively related
to technical debt principal, while CIS, NOP and DIT are negatively
related to the accumulation of TD. While both the study of Kosti et al.
[18] and ours use the same maintainability metrics, Kosti et al. do not
explicitly refer to a connection between these metrics and TD interest.

McCormack and Sturtevant [23] address architectural debt by
attempting to assess the potential value derived from a refactoring
effort. To this end, they try to evaluate the relationship between system
design decisions, which lead to TD, and increased costs of maintenance,
which represent the interest to be paid. More specifically, the authors
analyze how components with higher levels of coupling can be associ
ated with higher maintenance costs. Firstly, based on their prior work,
the authors apply a technique, namely Design Structure Matrix to
analyze the system’s architecture, capture the dependencies and calcu
late the coupling between components. This allows them to divide the
components into groups, according to their levels of coupling, and then
to characterize the system as a Core-Periphery one—if it possesses a
large, dominant, cyclic group of components, namely the Core—or as a
Hierarchical one—if it has small cyclic groups or no cyclic groups at all.
In the empirical study, the authors analyze two large projects of similar
size, one of them classified as a Core-Periphery system and the second as
a Hierarchical one. The descriptive analysis supports the hypothesis
that, for both systems, high-coupling components are more probable to
experience defects and hence to be related with higher defect-related
activity. The authors also perform a predictive analysis, by creating
two statistical models, one to predict the probability of a component to
experience a defect and another one to predict the volume of
defect-related activity. Number of lines of code in a file and its

cyclomatic complexity are used as control variables and are proven to be
positive and statistically significant for both systems and both models.
However, models with predictor variables added show a strong relation
between components with high coupling and: (a) the likelihood of
experiencing a defect, as well as (b) the defect-related activity. The
authors also introduce a financial analysis, where they calculate a cost
per line of code per year, by component category, to maintain each
system. The analysis indicates that tightly coupled components cost
more to maintain than loosely coupled ones. Finally, the study suggests
that repaying architectural TD by reducing coupling and lowering
maintenance costs may be valuable; however, managers should also
consider the cost of these refactorings. In comparison to our study, the
work of McCormack and Sturtevant [23] uses architectural design flaws
that lead to tightly-coupled components as a TD proxy, and assumes that
maintenance costs represent TD interest; our work focus on source code
issues to identify TD principal and adopt a set of maintainability metrics
as TD interest proxies, so as to provide a more thorough analysis of the
relationship between the two terms.

Furthermore, Kazman et al. [16] focus on architectural TD in terms
of flawed architecture structures, termed as architecture roots [39]:
these are considered technical debt items that incur high maintenance
penalties as identified through coupling and cohesion. They validate
their methodology by conducting a case study with an industrial part
ner. However, Kazman et al. [16], do not differentiate between TD In
terest and TD principal, and therefore it is not evident if they consider
maintenance penalties as principal or interest, since the term debt is
used collectively in that study.

Compared to related work, our study has a clear focus on identifying the
relationship between TD Principal and TD Interest. To this end, it adopts
well-validated valuation approaches, and provides an in-depth statistical
analysis of the aforementioned relationship, based on the Mantel test and
LME.

2.2. Quantification of TD Interest

In this section we present papers that deal with TD Interest calcu
lation. In Table 2, we summarize studies that quantify TD interest,
including those already presented in Section 2.1. In particular, in
Table 2, we note how TD interest is assessed, if the study acknowledges
the relation of TD Interest to maintainability, if it uses historical data
(from software repositories) for TD interest calculation and whether
they propose explicit metrics for assessing interest. We remind that
maintainability and the use of historical data to calculate maintenance

Table 2
TD Interest Assessment

Ref. TD Interest Assessor Maintainability History Metrics
[7] The extra effort needed to

maintain a system due to the
accumulation of TD in terms of
wasted software development
time

x

[10] Maintainability (expressed in
terms of stability) as a main
characteristic related to TD
interest

x x

[16] Coupling and Cohesion indicate
higher maintenance effort

x

[18] Structural proxies (i.e., quality
metrics)

x x

[23] Defect related activity x x x
[28] Effort spent on maintenance

activities based on historical data
Effort needed to rebuild a system
Level of software quality

x x x

[41] Defect Proneness and Change-
proneness

x x

A. Ampatzoglou et al.

Information and Software Technology 128 (2020) 106391

4

effort are the two core aspects of TD interest.
Concerning the studies already discussed in Section 2.1, Conejero

et al. [10] acknowledge that “maintainability is one of the main charac
teristics contributing to Technical Debt interest”, and decide to capture it
through the quality property of stability which is one of the most
important maintainability attributes. Specifically, Conejero et al. [10]
measure stability by calculating the number of use cases changed in each
release of the three systems they study. They define as a change in a use
case: (i) a modification of the feature that the use case addresses, or (ii) a
modification, addition, or deletion in the system that affects the
particular feature. Similarly, Zazworka et al. [41] recognize that
defect-proneness and change-proneness—the two proxies they use for
TD Interest—are connected to future maintenance costs. The authors use
historical data on the number of times a class is involved in fixing bugs,
that were injected, resolved, or alive in a version, to measure
defect-proneness. They also use data on the number of changes affecting
the class divided by the total number of changes in the repository, to
calculate change-proneness.

Moreover, McCormack and Sturtevant [23], as mentioned earlier,
aim at analyzing the relationship between design decisions and main
tenance costs, generally deemed to represent TD Interest. The authors
approach maintenance costs through maintenance effort, i.e., effort
spent on defect related activities: a metric computed through
bug-tracking and version control systems represents the development
activity that aims at defect correction. On the other hand, Kazman et al.
[16] focus on the relationship between architecture roots, i.e., flawed
structures, and the penalties they incur in terms of higher maintenance
costs. They retrieve data concerning the number of defects fixed, the
number of changes associated with architecture roots that were fixed,
and the number of lines of code committed to fix the defects and to make
the changes during the prior year. They then estimate the cost of
refactorings to calculate the penalty in terms of maintenance cost.
However, as mentioned before, Kazman et al. [16] do not refer to this as
TD interest. Finally, Kosti et al. [18] have used structural quality met
rics, that are used to assess maintainability (coupling, cohesion,
complexity, inheritance, and size metrics), as proxies of TD interest.

In addition to the five studies of Section 2.1, we have identified two
more studies that attempt to estimate interest and relate it to main
tainability. The first one is by Nugroho et al. [28], who use SIG/TUV’s
software quality assessment method for TD measurement. Particularly,
they perform source code analysis that involves metrics, such as lines of
code (LOC), code duplication, McCabe’s cyclomatic complexity,
parameter counts, and dependency counts, to map the system’s quality
properties to a five-star rating system, and calculate the Repair Effort, i.
e., the effort needed to reach the ideal quality level, which represents the
amount of the system’s TD. With regard to the system’s TD Interest,
which is defined as “the extra maintenance cost spent for not achieving the
ideal quality level”, the authors estimate it as a function of: (a) the effort
spent on maintenance activities within a year, calculated based on his
torical data, as a percentage of number of LOC estimated to change
yearly for maintenance reasons; (b) an estimate of the effort needed to
rebuild a system using a particular technology, determined by the total
size of the system (measured in LOC or Function Points) and a language
productivity factor; (c) a factor used to account for the level of quality,
assuming that the higher the quality level, the less the maintenance
effort.

Besker et al. [7], attempted to quantify TD Interest in terms of wasted
software development time through an empirical study, based on the
admission that interest is defined as the extra effort needed to maintain a
system due to the accumulation of TD. They perform a web-based survey
answered by 258 software stakeholders and they conduct interviews
consisted of unstructured, semi-structured and fully structured questions
with development teams within seven software companies. The results
of the study show that, according to the respondents, 36% of all software
development time is on average wasted because of paying the interest of
TD. The study also reveals that the system age influences the wasted

time, however there is no linear correlation between the two. Moreover,
Architectural Design and Requirement TD seem to cause the most
negative effect on software development, whereas there is no significant
differentiation on how a stakeholder’s role affects the perception of
wasted time. Finally, the respondents estimate that a significant per
centage of wasted time is spent on understanding and measuring TD
issues.

The state of the art in quantifying TD Interest is based on main
tainability and change proneness (either due to defects or new fea
tures). Furthermore, the metrics used as proxies for TD Interest are
either structural ones, or rely on historical data. We adopt the same
strategy and use both types of metrics.

3. Background information

In this section, we present background information. Section 3.1 de
scribes the estimation of TD Principal using SonarQube (based on
SQALE), while Section 3.2 presents our approach for assessing TD
Interest.

3.1. TD Principal Calculation

For the purpose of this study, we have decided to estimate principal
at the source code level, based on the computations provided by a widely
used platform, namely SonarQube [3,21]. SonarQube can assess the
quality of software relying on quality measures and issues, such as
coding rule violations. The platform algorithm was originally based
upon an adopted version of the SQALE method proposed by Letouzey
and Ilkiewicz [20], in which a remediation index is obtained for the
requirements of an applicable Quality Model. For example, for a
requirement stating that all files should have at least 70% code coverage,
the corresponding remediation action is to write additional tests; a
remediation function maps effort to each action. Finally, for each arti
fact, the remediation index relating to all the characteristics of the model
is obtained by adding all remediation indices linked to all quality re
quirements. The resulting SQALE Index is considered to represent TD
Principal of the source code.

SonarQube calculates TD Principal by identifying code smells (as the
corresponding Quality Model requirements) and calculating their
remediation. For identifying the existence of code smells, SonarQube
version 7.9 (for Java) relies on 562 rules (e.g., “Method overrides should
not change contracts”, “Package declaration should match source file
directory”, “Parameters should be passed in the correct order”, “Unused la
bels should be removed”). SonarQube rules are associated with (by
default) nineteen tags (see Table 31); however, the user is given the
chance to create custom tags at will. Since the number of tags is quite
high, it is expected to lead to a sparse table in the data collection phase,
we decided to group the tags into 4 categories. We call these categories
Aspects of TD Principal: (a) Understandability, (b) Poorly Written Code,
(c) Security/Runtime, and (d) Coding Standards (see Table 3). We note
that some tags could potentially belong to different tag categories, as
well as, additional tag categories could have been created. For instance,
groups could have also been created by inspecting the effects of a spe
cific code smell, instead of the cause of the smell (e.g., clumsy code is a
poorly written code, which has a negative effect on understandability).
However, in our study we have selected not to consider cause-effect
relations, in the sense that such a taxonomy would not uniquely cate
gorize all tags. Thus, we have built the classification schema only based
on the root of the smell and not on the affected categories. To eliminate
(as much as possible) the objectivity of this categorization, each one of

1 From the nineteen default tags of SonarQube, we deleted user-experience,
since it does not relate to software maintainability.

A. Ampatzoglou et al.

Information and Software Technology 128 (2020) 106391

5

the senior researchers of the study proposed a classification of his own,
and after some negotiation rounds (similar to the Delphi technique) they
have reached a consensus on the Aspects of TD Principal, as well as the
mapping of Code Smell Tags to them. Nevertheless, since this decision is
still objective a relevant threat to construct validity has been identified.
Moreover, we acknowledge that SonarQube is not a perfect solution for
measuring TD principal, as a perfect solution does not exist; we expand
on the limitations of using SonarQube in the Threats to Validity Section.

3.2. TD Interest Calculation

In this study, we calculate interest using the FITTED framework, as it
has been proposed [4,6,8] and empirically validated in our previous
work [6,37]. The validation was performed in an industrial setting and
contrasted the scores for TD Principal and TD Interest with the percep
tion of software engineers. The results suggested a rank correlation for
0.83 for TD Principal and 0.73 for TD Interest. We only recap the basic
notions of the FITTED framework here and refer to the aforementioned
works for further details.

Assuming that a system has an actual implementation, and a hypo
thetical optimal implementation (in terms of maintainability—i.e., ease
to maintain), maintaining the optimal system would require less effort
than maintaining the actual system (see Fig. 1). Despite the fact that a

system can by no means be characterized as globally optimal, based
solely on the optimization of some structural characteristics, there is a
plethora of studies aiming at software optimization, guided by the
application of software refactorings (e.g., [14,29,30])2. As shown in
Fig. 1, adding a new feature A to the optimal system would need a
certain effort, noted as Effort(optimum), whereas adding the same feature
to the actual system necessitates a larger effort, noted as Effort(actual).
The difference between these two efforts represents the TD Interest that
is accumulated during this maintenance activity.

According to FITTED [8], maintenance effort is inversely related to
the maintainability of the system—see Eq. (1). Although the relation
between effort and maintainability is not necessarily (or by definition)
linear, several studies model maintenance effort (through regression
modeling) as a polynomial of maintainability indicators (e.g., [38,42]),
achieving satisfactory prediction accuracy. In particular, van Koten and
Grey [38] propose a linear model3, whereas Zhou et al. [42] propose a
multivariate adaptive regression spline model4. Despite the differences
in the modelling of the solutions, both studies suggest that there can be a
linear relation between maintenance effort and maintainability.

Effort = a
1

maintainability
(1)

Given Eq. (1), the maintenance effort for the optimal system (which
is unknown), can be estimated as the product of the maintenance effort
for the actual system and the ratio of the maintainability of the actual
over the maintainability of the optimal system (we call this ratio
Maintainability Level) [8]—see Eq. (2).

Effortoptimum

Effortactual
=

a
maintainabilityoptimum

a
maintainabilityactual

=
maintainabilityactual

maintainabilityoptimum

= MaintainabilityLevel (2)

Finally, based on its definition in Fig. 1, TD Interest can be calculated
using the difference between the actual and the optimal effort, as follows
[8]—see Eq. (3):

TD interest = ΔEffort = Effort(actual) − Effort(optimum)

= Effort(actual) − Effort(actual) × (MaintainabilityLevel)

= Effort(actual) × (1 − MaintainabilityLevel) (3)

In practice, the above calculation is multiplied by the constant value

Table 3
Default metrics-tags provided by SonarQube

Aspect TD
Principal

Code Smell
Tags

Description Aspect TD
Principal

Code Smell
Tags

Description

Understandability brain-
overload

There is too much to keep in your head at one time Security /
Runtime

Cwe Relates to a rule in the Common Weakness
Enumeration.

confusing Will take maintainers longer to understand than is
really justified by what the code actually does

Bug Something is wrong and it will probably affect
production

Poorly Written
Code

clumsy Extra steps are used to accomplish something that
could be done more clearly and concisely

owasp-.* Relates to rules in the OWASP Top-10 security
standards

bad-practice The code likely works as designed, but the way it
was designed is widely recognized as being a bad
idea

unpredictable The code may work fine under current
conditions, but may fail erratically if conditions
change

design There is something questionable about the design of
the code

Suspicious It’s not guaranteed that this is a bug, but it looks
suspiciously like one

lock-in Use of environment-specific features Security Relates to applications’ security
unused Unused code Pitfall Nothing is wrong yet, but something could go

wrong in the future
Coding Standards Cert Relates to rules in a CERT standard Coding

Standards
Misra Relates to rules in MISRA standards

Convention Coding convention violation sans-top25-.* Relates to the SANS Top 25 Coding Errors,
which are security-related

Fig. 1. Increased Maintenance Effort for TD items

2 The relevant research area is termed search-based software engineering.
3 effort = c0 +

∑
wimaintainability indicatori

4 effort = c0 +
∑

wi
∏
(maintainability indicatori − ti)

A. Ampatzoglou et al.

Information and Software Technology 128 (2020) 106391

6

of Unit Cost of Maintenance (e.g. $ or € per hour), but that is irrelevant
for this study (although it is calculated), since the Mantel test employed
in this study considers distance matrices. Therefore, as aspects of TD
Interest, we consider (a) the Maintainability Level; and (b) the actual
Maintenance Effort of the system under study. The former is related to
structural properties of the corresponding system while the latter can be
estimated using historical information, as elaborated below.

Maintainability Level. Although no single function can capture all
aspects of quality, for the sake of simplicity, we assume that the optimal
system is the one that optimizes a certain fitness function assessing the
quality of software (e.g., in terms of complexity, cohesion, coupling,
etc.). Thus, to calculate the maintainability level, we first identify a set
of similar artifacts (e.g., classes, packages, systems—see [6]), we then
calculate the optimal value of the metric score within the set of similar
(in terms of lines of code, number of methods, cognitive complexity,
etc.) artifacts. The maintainability optimal artifact is an artificial one
that is assigned the “best” metric scores, among the similar artifacts: i.e.,
the metric score of lowest complexity, highest cohesion, lowest
coupling, etc. For example, given five similar artifacts with complexity
scores: 2, 5, 3, 8, 11; the artificial optimal artifact would be assigned a
complexity score of 2. Then we calculate the average ratio of the metric
score of the artifact under study, compared to the optimal value.
Maintainability, although not associated to a universally accepted
definition, is widely accepted as the ease of making changes into a
system [15]. The set of metrics that we have selected to use in our study
for quantifying maintainability (see Table 4) belong to well-known
metric suites [9,22]. The metrics selection was based on a secondary
study by Riaz et al. [32], which reported on a systematic literature re
view (SLR) aimed at summarizing software metrics that can be used as
maintainability predictors.

In particular, Riaz et al. [32] have performed a quality assessment of
maintainability models, through a quantitative checklist, in order to
identify studies of high-quality score, i.e., studies that provide reliable
evidence. More specifically, the checklist was comprised of 19 questions
and each model was assessed for each criterion by a three-point scale:
yes, no, or partially, with associated scores of 1, 0, and 0.5 respectively.
The range of the total score of each study was between 0 and 19. All
studies that have scored 7 or below were excluded from the list of
selected studies, whereas among the studies with the highest scores were
those of van Koten and Gray [38], and Zhou and Leung [42]. Both
studies (i.e., [38,42]) have used the same definition of maintainability
and they have been based on two metric suites proposed by Li and Henry
[22] and Chidamber et al. [9], i.e., two well-known object-oriented set
of metrics. The employed suites contain metrics that can be calculated at

the source-code level, and can be used to assess well-known quality
properties, such as inheritance, coupling, cohesion, complexity and size.
We note that according to Riaz et al. [32], another study (performed by
Misra [27]) scored equally to the previously mentioned ones. However,
Misra was using metrics coming from multiple suites (2 out of the 4 are
already considered), and we preferred to select those that were common
in the studies.

Maintenance Effort: Since the evolution of the software cannot be
predicted, it is not possible to foresee what kind of modifications will be
made in a system during future releases. Hence, we base our assessment
of future maintenance effort on historical data, by considering past effort
spent on maintenance activities. More specifically, as maintenance effort
we assume the average lines of code added/deleted/modified between
all pairs of successive versions of a system. This strategy has been used in
a variety of studies e.g., [10,16,18,23,28], and [41].

4. Case study design

Case study is an observational method that is used for studying
phenomena in a real-life context [34]. This case study has been designed
and is presented according to the guidelines of Runeson et al. [34].

4.1. Research Objectives and Research Questions

The goal of the paper, as mentioned in Section 1, is to investigate the
relation between TD Principal and Interest, as well as the relation be
tween the Aspects of TD Principal (see Section 3.1) and the Aspects of TD
Interest (see Section 3.2). An overview of the aspects of TD Principal and
TD Interest, is presented in Fig. 2. We note that the calculation of each
aspect at a higher level, is an aggregation of the lower level:

• We remind that TD Principal has four aspects that correspond to the
categories of code smell tags. As explained in Section 3.1 TD Prin
cipal is calculated as the sum of TD Principal due to Understand
ability, Security/Runtime Issues, TD Principal due to Poorly Written
Code, and TD Principal due to the Violation of Coding Standards.

• TD Interest on the other hand has two aspects (at the second level):
Maintainability Level (ratio of maintainability of actual vs. optimal
case) and Maintenance effort. The aggregation formula from the 2nd

to the 1st level is provided in Section 3.2 (see Eq. 3). Maintainability
is further decomposed into five structural properties, while Mainte
nance effort constitutes historical change. We consider these five
structural properties and the historical changes as aspects of TD in
terest at the third level. The function for aggregating the 3rd level
aspects to Maintainability Level is the average of the distance from
optimal, as explained in Section 3.2.

Based on this overview, and the goal of this study (i.e., to explore the
relation between TD Principal and TD Interest, as well as their aspects),
we have formulated three research questions.

RQ1: Is TD Principal related with TD Interest?

This research question aims to explore if source code artifacts with a
similar level of TD Principal are presenting similar levels of TD Interest.
The existence of such a relation, would suggest that interest-related in
formation could be subsumed by principal-related information, and
therefore TD management, based only on TD Principal would make
sense. With respect to Fig. 2 this research question explores the relation
of the 1st level of TD Principal with the 1st level of the TD Interest
hierarchy.

RQ2: Which Aspects of TD Interest are more related to TD Principal?

Given the fact that TD Interest calculation considers two 2nd level
aspects (maintainability level and maintenance effort), we first explore

Table 4
Maintainability Properties and Metrics

Property Metric Description
Inheritance

(Inh)
DIT Depth of Inheritance Tree: Inheritance level number,

0 for the root class.
NOCC Number of Children Classes: Number of direct sub-

classes that the class has.
Coupling (Cpl) MPC Message Passing Coupling: Number of send statements

defined in the class.
RFC Response for a Class: Number of local methods plus the

number of methods called by class methods.
DAC Data Abstraction Coupling: Number of abstract types

defined in the class.
Cohesion (Coh) LCOM Lack of Cohesion of Methods: Number of disjoint sets of

methods in the class.
Complexity

(Com)
CC Cyclomatic Complexity: Average cyclomatic

complexity of methods in the class.
WMPC Weighted Method per Class: Weighted sum of methods.

Each method of the class is assigned to a weight equal
to 1.

Size (Size) SIZE1 Lines of Code: Number of semicolons in the class.
SIZE2 Number of Properties: Number of attributes and

methods in the class

A. Ampatzoglou et al.

Information and Software Technology 128 (2020) 106391

7

if any one of these two aspects of TD Interest is more related to TD
Principal (RQ2.1). The answer to this RQ can shed light into the impor
tance of the constituents of TD Interest, and guide researchers in their
future attempts to quantify interest. Next, we focus on the maintain
ability level aspect of TD Interest and investigate which of the 3rd level
aspects (i.e., coupling, cohesion, complexity, size, or inheritance) are
more related to TD Principal (RQ2.2). We note that we are not performing
a similar analysis for the historical change data (i.e., we do not further
split this concept), since no actionable outcome can be reached by such
an investigation: you cannot change the history of a project. In contrast,
structural properties that appear to be of more interest can be improved
or prioritized; for instance, in case cohesion ends up being an important
property, classes that suffer from low cohesion can be refactored (e.g.,
split method, split class, etc.). With respect to Fig. 2 this research
question focuses on the relation between the 1st level of TD Principal and
the 2nd and 3rd Level of TD Interest.

RQ3: Which Aspects of TD Principal are more related to TD Interest?

The third research question deals with comparing different Aspects of
TD Principal (of the 2nd level), with respect to the interest that they are
expected to incur. In this research question, we investigate if and which
of the Aspects of TD Principal are related to the highest interest. This
question becomes extremely relevant for preventing, prioritizing, and
repaying specific aspects of TD Principal within the same technical debt
item. For example, if it turns out that understandability issues are pro
ducing more interest compared to poorly written code issues, then the
issues of the aspect should be prioritized. With respect to Fig. 2 this
research question focuses on the 2nd level of TD Principal and the 1st level
of TD Interest.

4.2. Case Selection and Unit Analysis

The study of this paper is characterized as multiple, embedded case
study [34], in which the cases are the OSS projects and the units of
analysis are their classes. The reason for using OSS systems is the vast
amount of available data in OSS repositories, in terms of versions and
classes. To obtain data from high-quality projects (see Table 5) that
evolve over a period of time, we require that the software systems:

Fig. 2. Aspects of TD Principal and TD Interest

Table 5
OSS Projects Selected for the Case Study

Name Short Description #classes
Apache XML Graphics

(XMLGraph)
Apache XML Graphics Commons is a library
that consists of several reusable components
used by Apache Batik and Apache FOP

109

Commons Math
(ComMath)

It is a library for mathematics and statistics
components

901

Commons Collection
(ComColection)

The Apache Commons Collections package
contains types that extend and augment the
Java Collections Framework.

307

Commons Net
(ComNet)

Apache Commons Net library implements the
client side of many basic Internet protocols.

148

Commons IO (ComIO) Commons IO is a library to assist with
developing IO functionality.

113

Commons Jelly
(ComJelly)

Jelly is a tool for turning XML into executable
code.

73

Http Components –
Core
(HTTPCore)

Http Core is a set of HTTP transport
components, used to build client and server
services.

368

Http Components –
Client
(HTTPClient)

Http Components is responsible for creating
and maintaining a toolset of Java components.

294

Apache Struts (Struts) Struts is an MVC framework for creating
modern Java web applications.

622

Xerces 2 Java
(Xerces2Java)

Xerces2 is a library for parsing, validating and
manipulating XML files

665

A. Ampatzoglou et al.

Information and Software Technology 128 (2020) 106391

8

• Are popular OSS project of the Apache community. This ensures that
the investigated projects are recognized as important by the OSS
community, i.e., there is substantial system functionality and sub
stantial development activity in terms of bug-fixing and adding
requirements.

• Are written in Java. We include this criterion because of the
employed metric calculation tools.

• Contain more than 70 classes. This ensures that we will not include
“toy examples” in our dataset. After data collection, a manual in
spection of the projects has been performed to guarantee that the
classes are not trivial.

• Have more than 5000 commits. We have included this for similar
reasons to the first criterion. Although the selected number of ver
sions is ad/hoc, it is set to a relatively high value, in order to guar
antee high activity and evolution of the project. Also, this number of
revisions provides an adequate set of repeated measures as input to
the statistical analysis.

4.3. Data Collection and Pre-Processing

For the quantification of TD Principal, we used the SonarQube API to
obtain the TD Principal metric for each one of the classes of the projects
under analysis. Next, for each row in the dataset we recorded the
number of instances of issues in each Tag Category, which are concen
trated in the class (5 variables). Regarding TD Interest, we used the TDM
toolkit5 of the SDK4ED platform6, developed in the context of the
SDK4ED project7. On the completion of data collection, each class (unit
of analysis) was characterized by 12 variables—10 maintainability
metrics, maintenance history, and TD Interest. The pre-processing was
completed by the deletion of rows that contained missing values.
Missing values can be found in cases a maintainability metric cannot be
calculated: e.g., CC cannot be calculated for abstract methods, or LCOM
cannot be calculated for interfaces.

4.4. Data Analysis Methodology

Since the main objective of the study is to examine whether classes
that present similar levels of TD Principal, also produce a similar amount
of TD Interest, classical approaches such as correlation analysis are not
able to provide straightforward answers. Although traditional correla
tion coefficients can be used to explore the nature and strength of the
pairwise relationship between variables of a multivariate dataset, they
can only assess which subset of software metrics is associated to the TD
Principal at the lowest level of the quality hierarchy. The current
approach focuses on the similarity (dissimilarity) of classes to examine
the association between TD Principal and TD Interest, by considering
that TD Principal and TD Interest are multifaceted concepts that can be
assessed through various aspects (see Section 3 and Fig. 2) synthesizing
in turn, multidimensional spaces of metrics. Through this approach, we
believe that researchers and practitioners will be able to acquire sig
nificant knowledge in a more straightforward and intuitive manner,
since the interpretation of the results resembles the way of human
decision-making by comparing similar cases (i.e., classes), as in case-
based reasoning (CBR) process.

4.4.1. Mantel Test
To this regard, we make use of a multivariate statistical methodol

ogy, namely the Mantel test [24] that has been extensively applied in
many scientific areas such as: health, ecology, biology, population ge
netics. The rationale of the approach is to evaluate the association

between the corresponding positions of all pairs of observations from
two dissimilarity matrices computed by either univariate or multivariate
data. The procedure is further augmented with a randomization mech
anism based on the permutation of the rows and columns of one of the
two dissimilarity matrices, to test the null hypothesis that the two
dissimilarity matrices are uncorrelated. We have also to point out that
the Mantel test has been used in software engineering: (a) to evaluate the
difference between perspectives in the determination of the relative
importance of impact analysis issues of software [33]; and (b) for the
calibration of the analogy-based software cost estimation model [17].
An outline of the approach that we have used for applying the Mantel
test, in our study, is described below:

1 Each analysis element (i.e., box in Fig. 2) is represented by either a
vector or a matrix, in which the rows correspond to the n classes of
each project and columns comprise the metrics representing a spe
cific element (see Table 6). A simple concept is represented by a
column vector (Table 6), e.g. TD Principal, the measurements can be
represented in the following form TDPrincipal

T =

(TDPrincipalc1
,…,TDPrincipalcn

)
T. Regarding multifaceted concepts, e.g.

the quality property of Size evaluated by two metrics (Lines of Code
and Number of Properties, 3rd Level, Table 6), the measurements can
be compiled in the form of a tabular matrix
⎡

⎣
SIZE1c1 SIZE2c1

⋮ ⋮
SIZE1cn SIZE2cn

⎤

⎦

Table 6
Analysis Element Representation

Level Concept Element Representation Metrics
1 TD

Principal
TD Principal Vector Total TD Principal

1 TD
Interest

TD Interest Vector Total TD Interest

2 TD
Principal

Types of TD
Principal Issues

Matrix TD Principal due to
Understandability
Issues
TD Principal due to
Security/Runtime
Issues
TD Principal due to
Poorly Written Code
TD Principal due to
the Violation of
Coding Standards

2 TD
Interest

Maintainability
Level

Matrix Coupling, Cohesion,
Complexity, Size
Inheritance

2 TD
Interest

Maintenance
Effort

Vector Average Number of
Lines Changed
between Commits

3 TD
Interest

Coupling Matrix Message Passing
Coupling
Response for a Class
Data Abstraction
Coupling

3 TD
Interest

Cohesion Vector Lack of Cohesion of
Methods

3 TD
Interest

Complexity Matrix Cyclomatic
Complexity,
Weighted Method per
Class

3 TD
Interest

Size Matrix Lines of Code,
Number of Properties

3 TD
Interest

Inheritance Matrix Depth of Inheritance
Tree, Number of
Children Classes

5 ht***tps://github.com/AngelikiTsintzira/Technical-Debt-Management-
Toolbox

6 ht***tp://sdk4ed.se.uom.gr/
7 ht***tps://sdk4ed.eu/

A. Ampatzoglou et al.

http://sdk4ed.se.uom.gr/
https://sdk4ed.eu/

Information and Software Technology 128 (2020) 106391

9

where SIZE1ci and SIZE2ci represent the measurements of i class
regarding the two metrics Lines of Code and Number of Properties,
respectively. The followed approach provides us the ability to capture a
relation between sets of metrics that quantify two concepts that can be
either simple or multifaceted; whereas traditional univariate correlation
analysis would be able to indicate the relationship between pairs of
scalar metrics.

2 From each analysis element we calculate a distance matrix for each
pair (i, j) of n classes for a given project. For the case of TD Principal
and TD Interest (first levels of hierarchies), the first step of the method
involves the evaluation of two distance matrices, Distance(TDprinci

pal) and Distance(TDinterest) representing the distances between the
pair of classes (i, j) of the two vectors (1st Level, Table 6). In the case
of a multifaceted TD concept (e.g. quality property of Size, 3rd Level,
Table 6), the distance matrix is evaluated based on the measurements
of all the associated metrics (see Table 6). We note that dissimilar
ities between each pair of classes are evaluated on the standardized
measurements ([0, 1]) to be immune to metrics’ range. For example,
the investigation of the relation between TD Principal (1st Level) and
the element of Size, described by two metrics (Lines of Code and
Number of Properties) is based on distance matrices evaluated through
the following formulae:

aij =

̅̅̅
(

TDPrincipalci
− TDPrincipalcj

)2
√

(2)

bij =

̅̅
(
SIZE1ci − SIZE1cj

)2
+
(
SIZE2ci − SIZE2cj

)2
√

(3)

3 Then, we take separately for each project all possible combinations
of analysis elements (i.e., pairs of boxes: one from the TD Principal
and another from TD Interest hierarchies), and calculate the Mantel’s r
correlation coefficient between the corresponding matrices.

a for RQ1, we use the vectors of TD Principal and TD Interest of the first
level

b for RQ2.1, we use the vector of TD Principal, the matrix of Main
tainability Level and the vector of Maintenance Effort

c for RQ2.2, we use the vector of TD Principal, the matrices of Coupling,
Cohesion (the only vector), Complexity, Size, and Inheritance

d for RQ3, we use the vector of TD Interest and the matrix of Types of
TD Principal Issues

We have also to note that due to the symmetrical nature of a distance
matrix (see an example on Table 7), only the elements from the upper or
lower triangle matrix are used.

4.4.2. Statistical Inferential Process
After the discovery of similarity patterns, the next critical issue is to

investigate whether the observed phenomena can be generalized to the

population of OSS projects. Given the fact that the case study of the
paper is characterized as multiple (i.e., using many projects as sub
jects—see Section 4.2), there is an imperative need to adopt an appro
priate statistical inferential mechanism in order to derive conclusions
regarding the population of OSS projects with similar characteristics.
Towards this direction, an aggregated dataset comprising the Mantel’s
correlation coefficients evaluated from the classes of each OSS project
for paired analysis elements is constructed. For example, for the case of
RQ2, the dataset can be expressed via a long-format matrix as presented
in Table 8. As we can observe, each row of the matrix comprises the
Mantel coefficient evaluated from the distance matrices of TD Principal
and the alternative two aspects of TD Interest (Maintainability Level and
Maintenance Effort) for a given project of our experimental setup. The
goal is to examine the effects of aspects of TD Interest on TD Principal. For
this reason, we use the Linear Mixed Effects (LME) modelling statistical
technique [31] that is able to model simultaneously two types of effects:
(a) the fixed and (b) the random effects. In the terminology of LME
models, the term “fixed effect” is used to depict factors influencing the
mean value of a response variable, whereas a “random effect” (i.e. Project
in our setup) may have an impact on the variance of the response var
iable. The reason to control projects as a random effect is that our
dataset consists of projects selected from an infinite population of
projects.

Regarding RQ2.1, our aim is to examine whether there is a difference
between the 2nd Level Aspects of TD Interest on how they are related with
the TD Principal. We essentially investigate which of the two aspects
correlates better with TD Principal. This difference can be formally
modeled as an effect of the factor “TD Interest Aspects” (with two discrete
levels, namely Maintainability Level and Maintenance Effort) on the
Mantel correlation in the presence of the project’s random effect. So, we
actually consider the Mantel r as response variable while the type of
aspect (fixed effect) and the project (random effect) are the two
explanatory variables (Table 8). As far as the second goal of RQ2 con
cerns, which is the investigation of whether there are 3rd Level Aspects
of TD Interest that are more related to TD Principal, a similar approach is
followed. In this case, the repeated measures design is represented via a
matrix, where the examined effect is the 3rd Level Aspect of TD Interest:
Inheritance, Coupling, Cohesion, Complexity, and Size) with the same
random effect, i.e. the Project. Finally, a similar process has been also
applied for RQ3. The rest of the repeated measure designs is presented in
the Appendix.

5. Results

In this section, we provide the answers to the RQs of this study. In
Table 9 and Fig. 3, we present the descriptive statistics for the aspects of
TD Interest (second and third level) and TD Principal (second level),
respectively.

5.1. Relation between TD Principal and Interest (RQ1)

Mantel’s correlation coefficients (r) for each pair of TD Principal and
TD Interest, as evaluated from the classes of each OSS project, are sum
marized in Fig. 4 ranging from weak (rmin = 0.271, ComNet) to very
strong (rmax = 0.820, ComIO) correlation. The y-axis of Fig. 4, de
marcates the regions of “no”, “weak”, “moderate”, “strong”, or “very
strong” relation [43], whereas the x-axis does not have a specific

Table 7
Distance-Matrix Example for TD Principal (1st Level) and Size Element of TD
Interest

Distance (TDPrincipal) Classes
C1 C2 … Cn

Classes C1 0 α12 … α1n

C2 α21 0 … α2n

… … … … …
Cn αn1 … … 0

Distance (TDInterest-Size) Classes
C1 C2 … Cn

Classes C1 0 b12 … b1n

C2 b21 0 … b2n

… … … … …
Cn bn1 … … 0

Table 8
Repeated Measures Design (RQ2.1)

Mantel r TD Principal Aspect of TD Interest Project
r11 Total TD Principal Maintenance Effort Project 1
r21 Total TD Principal Maintainability Level Project 1
… … … …
r1n Total TD Principal Maintenance Effort Project n
r2n Total TD Principal Maintainability Level Project n

A. Ampatzoglou et al.

Information and Software Technology 128 (2020) 106391

10

conceptual interpretation: it is just used for spreading projects in the
full-width of the graph, to facilitate readability. Based on the evaluation
of coefficients and their corresponding p-values, we can observe that
there is noted a statistically significant correlation between the distance
matrices of TD Principal and TD Interest for the whole set of the examined
projects implying that classes with similar levels of TD principal have
similar levels of TD interest. Based on the scales presented in Fig. 4, for
80% of the projects the relation between TD Principal and TD Interest is
at least moderate.

In the second step of the analysis, an LME model is fitted to inves
tigate the strength of the observed association to the population of OSS
projects. The parameter of the LME model fitted on the accumulated
results demonstrates a mean value of 0.540 signifying a moderate cor
relation between TD Principal and TD Interest aspects.

Classes with similar levels of TD Principal tend to have similar levels
of TD Interest. The strength of this relation is at least moderate and
statistically significant.

5.2. Relation between TD Principal and Aspects of TD Interest (RQ2)

Comparing 2nd-level Aspects of TD Interest (RQ2.1). Given the relation

between principal and interest, we further drill down to investigate if
either of the second-level aspects of interest, Maintainability Level
(structure) or Maintenance Effort (history) presents a higher effect on
this relation. Fig. 5 presents the distributions of the correlation co
efficients between TD Principal and the two aspects of TD Interest
(Maintainability Level and Maintenance Effort), in which each asterisk
denotes the sample coefficient for an examined project of the case study.
The p-values of the tests revealed statistically significant correlations for
all pairwise comparisons between TD Principal and both aspects of TD
Interest. Regarding the strength of the association for the Historical
aspect of TD Interest (i.e., Maintenance Effort), the coefficients range,
again, from weak (rmin = 0.160, for Xerces2Java) to strong (rmax =

0.700, for ComJelly), whereas the results are similar for the Structural
aspect of TD Interest (rmin = 0.230, for ComIO,rmax = 0.610, for
ComJelly).

To investigate the effect of the Aspects of TD Interest on the evaluated
correlation coefficients, we fitted again, an LME model. The model did
not reveal a statistically significant main effect of the Aspects of TD In
terest on the examined coefficients (F = 0.415, p = 0.536) denoting that
the two aspects are correlated to TD Principal to the same extent. The
parameter estimates for the population mean values of correlation are
0.384 and 0.418 for Maintainability Level and Maintenance Effort aspects,
respectively. Given the fact that both aspects of interest have merit, and
do not differ significantly, it is important to investigate if the aggregated
measure of TD Interest is more related to TD Principal compared to the
association of the two aspects (in isolation) to TD Principal. The results
suggest that TD Principal seems to present a higher correlation to the
aggregated TD Interest metric (1st level of the TD Interest hierarchy)
compared to the aspects of TD Interest (second level of hierarchy).

To investigate the generalizability of the aforementioned results, we
fitted an LME model incorporating the fixed effect of the factor Hierarchy
Level (1st Level/2nd Level). Based on the results of the previous model (i.
e. insignificant differences between the two Aspects of TD Interest), we
have to clarify that the category Second Level aggregates the correlation
coefficients evaluated from both Maintainability Level and Maintenance
Effort aspects of TD Interest. The model revealed a statistically significant
main effect of the factor Hierarchy Level on the mean values of the cor
relation coefficients (F = 5.927, p = 0.025).

Interpreting the parameter estimates of the LME model (see
Table 10), the aggregated measure of TD Interest presents a higher mean
correlation value to TD Principal compared to the two aspects in isola
tion. The negative sign of the parameter estimate for the Second Level of
TD Hierarchy implies that the mean correlation coefficient is 0.139 lower
than the corresponding value evaluated from the First Level of TD Hier
archy (0.540). For the rest of this study, we do not perform any analysis
on the 2nd level of TD Interest.

The aggregated measure for TD Interest seems to be a more repre
sentative metric for capturing the divergence of classes in terms of
their TD principal compared to the individual Historical or Structural
metrics

Comparing 3rd-level Aspects of TD Interest (RQ2.2). In this sub-section
we investigate whether there are certain structural aspects of TD Interest
(3rd level of the TD Interest hierarchy), that are more related to TD
Principal (RQ2.2). The main motivation for this, as explained in Section
2.2, is the fact that structural properties are directly linked to actionable
results; e.g., a tentative importance of lack of cohesion, can underline
the importance of conforming to the Single Responsibility Principle
[25].

Fig. 6 summarizes the Mantel’s correlation coefficients (r) evaluated
from the classes of each OSS project based on the dissimilarities for each
pair of TD Principal and maintainability metrics (Inh: Inheritance, Com:
Complexity, Coh: Cohesion, Cpl: Coupling). The results suggest that the
strength is heavily dependent on the type of maintainability predictor,
ranging from statistically significant very weak correlation (e.g. for Inh

Table 9
Descriptive Statistics for TD Interest and its Aspects

Metric N M SD Мin Мax
TD Interest 3599 59.12 114.62 0.92 1698.10
Aspect of TD

Interest
Metric N M SD Мin Мax

Maintenance
Effort –
Historical
Change

LOC 3599 46.04 83.90 0.20 1401.00

Maintenance
Difficulty –
Inheritance
(Inh)

DIT 3600 2.17 1.40 1 9

Maintenance
Difficulty –
Inheritance
(Inh)

NOCC 3600 0.76 2.55 0 41

Maintenance
Difficulty –
Coupling (Cpl)

MPC 3600 41.00 106.17 0 2531

Maintenance
Difficulty –
Coupling (Cpl)

RFC 3600 31.68 41.43 0 532

Maintenance
Difficulty –
Coupling (Cpl)

DAC 3600 0.29 1.05 0 20

Maintenance
Difficulty –
Cohesion (Coh)

LCOM 3389 75.27 356.25 0 8759

Maintenance
Difficulty –
Complexity
(Com)

CC 2790 1.51 1.27 1 22.57

Maintenance
Difficulty –
Complexity
(Com)

WMPC 3600 9.17 14.45 0 276

Maintenance
Difficulty – Size
(Size)

SIZE1 3600 56.50 91.80 1 1361

Maintenance
Difficulty – Size
(Size)

SIZE2 3600 11.12 17.16 0 238

Note-1: N refers to the number of classes in which the metric was calculated (e.
g., CC cannot be calculated for interfaces / abstract classes). M, SD, Min Max
stand for: mean, standard deviation, minimum and maximum of the metric.
Note-2: The range of values for all the metrics that represent the aspects of TD Interest
is [0, +∞) and TD Interest itself is measured in euros, using as Unit Cost of Main
tenance the 1.8324 dollars per line of code (see [8])

A. Ampatzoglou et al.

Information and Software Technology 128 (2020) 106391

11

predictor, rmin = 0.06, ComMath) to strong correlation (e.g. for Size
predictor, rmax = 0.671, HTTPClient). Generally, Size seems to be the
most related maintainability predictor of TD Interest to TD Principal. In
contrast, Inheritance presented low coefficients that are statistically
significant for 4 out of 10 cases.

The findings of the LME for the accumulated results present a sta
tistically significant coefficient, demonstrating a significant main effect
of the maintainability predictors on the response variable, F = 13.061
and p < 0.001. The parameter estimates of the model (Table 11) reveal
that the mean value of correlation between TD Principal and Inheritance
(reference category of the FITTED model) is very weak 0.061 (rInh =

bIntercept = 0.061) and significantly lower than the corresponding popu
lation mean values of Coupling (rCpl = bIntercept + bCpI = 0.061 + 0.381 =

0.442), Cohesion (rCoh = bIntercept + bCoh = 0.061+ 0.297 = 0.359),
Complexity (rCom = bIntercept + bCom = 0.061+ 0.306 = 0.367), and Size
(rSize = bIntercept + bSize = 0.061+ 0.439 = 0.500).

The post-hoc analysis through Tukey’s HSD test signifies statistically
significant differences (p < 0.001) in all pairs between Inheritance and
the other four quality properties (Fig. 7—cases in which the error bar
does not cross the vertical dashed line on 0.0). Regarding the Size, there
is a statistically significant difference with Complexity (p = 0.030) and
Cohesion (p = 0.017), but no difference compared to Coupling (p =

0.702). Therefore, we consider the strength of the relation of Coupling
to TD Principal, similar to the strength of the relation between Size and
TD Principal. Finally, the rest pairwise comparisons do not indicate
statistically significant differences.

Fig. 3. Aspects of TD Principal Frequency
Note: Aspects of the TD Principal are represented as counts of detected issues in all projects. Code Smell Tags that are not presented in Fig. 3 (compared to Table 3) have zero
instances in our dataset.

Fig. 4. Mantel’s coefficients between Principal and Interest

A. Ampatzoglou et al.

Information and Software Technology 128 (2020) 106391

12

Size and Coupling are the maintainability-related properties that are
most closely related to TD Principal, followed by Cohesion and
Complexity.

5.3. Relation between Aspects of TD Principal and TD Interest (RQ3)

In this section, we present the results on the relation between aspects
of TD Principal and TD Interest (RQ3). We remind that the aspects of TD
Principal correspond to the four tag categories (Understandability,

Poorly Written Code, Security/Runtime, and Coding Standards), that
group the nineteen tags of code smells (see Section 3.1). Subsequently
we evaluate the correlation of those four aspects to the first level of the
TD Interest Hierarchy. TD Principal aspects present statistically significant
correlations to TD Interest for the majority of the examined projects (37
out of 40 cases—see Fig. 8) ranging from weak (rmin = 0.137, Com
Collections) to strong (rmin = 0.699, ComJelly). Regarding the LME
model incorporating the factor aspects of TD Principal, the findings did
not reveal a statistically significant main effect on the examined co
efficients (F = 1.126, p = 0.356).

All four categories of code smells (aspects of TD Principal) present a
moderate relation to TD Interest.

6. Discussion

In this section we discuss the main findings of this paper, first
interpreting the obtained results, and then providing useful implications
for researchers and practitioners.

Fig. 5. Distributions of coefficients: TD Principal and Aspects of TD Interest (Maintainability Level / Maintenance Effort)

Table 10
LME - Main Effect of Factor Hierarchy Level of TD Interest

b SE Df t p
First Level 0.540 0.053 19 10.248 < 0.001
Second Level -0.139 0.057 19 -2.435 0.025

Note: b, SE, df, t, p stands for parameter estimations, standard error of the es
timates, degrees of freedom, t-statistic and p-value, respectively. The reference
category for factor Hierarchy Level of TD Interest is First Level.

Fig. 6. Distributions of Mantel’s coefficients between TD Principal and Maintainability Predictors

A. Ampatzoglou et al.

Information and Software Technology 128 (2020) 106391

13

Interpretation of results. The goal of this study is to explore the
relation between TD Principal and Interest, as well as the relation be
tween the aspects of both concepts. First, we have been able to provide
empirical evidence on the existence of a relation between principal and
interest. Therefore, although no causal effect can be assumed between
principal and interest, we have provided the first well-based indications
on the existence of a relation between interest and principal: classes with
similar levels of TD Principal tend to produce similar levels of TD In
terest. We note that identifying the form of the relationship (linear or
any other type) would require a different kind of analysis. Thus, the
existence of a relation similar to the one of economics still needs
investigation, probably through a different study setup that can assess
causality.

We have also unveiled a relation between TD Principal and 4 (out of
5) 3rd level aspects of TD Interest (namely: size, coupling, cohesion, and

Table 11
LME - Main Effect of Aspect of TD Interest

b SE df t p
Intercept 0.061 0.062 30 0.988 0.331
Complexity 0.306 0.063 30 4.844 < 0.001
Cohesion 0.297 0.063 30 4.705 < 0.001
Coupling 0.381 0.063 30 6.021 < 0.001
Size 0.439 0.063 30 6.947 < 0.001

Note: b, SE, df, t, p stands for parameter estimations, standard error of the es
timates, degrees of freedom, t-statistic and p-value, respectively. The reference
category for factor maintainability predictor of TD Interest is Inh.

Fig. 7. Post-hoc analysis for LME model (main effect of Maintainability Predictors of TD Interest)

Fig. 8. Distributions of Mantel’s coefficients between Tag Categories of code smells and TD Interest

A. Ampatzoglou et al.

Information and Software Technology 128 (2020) 106391

14

complexity). This relation appears to be stronger for size and coupling,
and less strong for cohesion and complexity:

• Size: The relation between TD Principal and size (i.e., classes of
similar size tend to have similar TD Principal) is intuitive in the sense
that the more lines of code exist in the system, the more rules are
expected to be violated. However, in most cases, this is not an
actionable result as refactoring only for the sake of reducing size is
very rarely done. In contrast, the size of software presents a linear
growth over time; thus, it is of paramount importance that new code
inserted into the system has as few rule violations (TD principal) as
possible. Nevertheless, this observation provides two interesting
implications: (a) TD Principal normalization (by size) makes sense
for comparing classes of different sizes; and (b) the identification of
design hotspots (in terms of TD Principal) should not be performed at
a system-wide, but between similar (in terms of size) neighborhoods
of classes; in the sense that artifacts of different size will not be
directly comparable.

• Coupling, Cohesion and Complexity: The relation of TD Principal with
these three quality attributes (Aspects of TD Interest—i.e., classes
with similar TD Principal tend to have similar levels in these three
quality properties), is indirect: we conjecture that developers who
pay attention to software design (e.g., improved modularity, or low
complexity) are also careful not to violate source code programming
rules. The fact that coupling is more strongly related to TD Principal
compared to cohesion and complexity denotes that a property
reflecting the design rather than the implementation, is more
important for maintenance. We remind that coupling, as calculated
in this study (i.e., MPC, RFC, and DAC), can be calculated from
design level artifacts (e.g., UML class or sequence diagrams);
whereas complexity (CC—count of iteration and selection state
ments) and cohesion (LCOM—attributes used in method bodies) can
only be captured by parsing source code artifacts.

Finally, regarding the specific aspects of TD Principal, the results
suggest that the four aspects do not differ statistically significantly, in
terms of the TD Interest that they are associated with. We would expect
that TD interest (in the way that it is assessed in this study) as a struc
tural property, is conceptually closer to two of the TD Principal aspects:
code understandability and design practice violations. However, the
other two TD Principal aspects (coding standards and run-time and se
curity violations) seem equally related to TD interest. This is not intui
tive especially for the relation between run-time and security violations
and TD interest; a study investigating a possible causality between the
two would be particularly interesting.

Implications to Researchers and Practitioners. Regarding practi
tioners, there has always been demand for an accurate calculation of
interest to drive the prioritization of repaying TD. While there are
relatively mature ways to calculate TD principal (mostly through source
code analysis), TD interest is more elusive as it depends on knowing
future changes. The establishment of a relation between TD principal
and interest, implies that TD principal can be safely used for TD prior
itization: paying back the TD items with the highest principal will very
likely also reduce the TD interest paid in the system. In practice, prior
itization of TD items is required whenever a development team receives
an intractable number of refactoring suggestions from a TDM tool
(which is the usual case when large rule-sets are applied on large soft
ware systems). Despite the fact that practitioners could either prioritize
based on TD Principal or TD Interest; in fact, they have long been
prioritizing TD items with large principal. Our results provide empirical
evidence that this is a sound practice, since the amount of TD Principal is
related to the amount of TD Interest, in the sense that classes with similar
levels of TD Principal tend to have similar levels of TD Interest. However,
this observation does not downgrade the significance of TD Interest
assessment: we have also provided evidence that especially for TD
repayment, emphasis should be placed on improving specific quality

properties (i.e., coupling and size), which have proven to be linked to
the concentration of more TD Principal. Additionally, based on the
findings of this study, some interesting future work opportunities have
been identified. Therefore, we encourage researchers to:

• Study of causality. The establishment of a correlation between TD
interest and principal and their various aspects, begs the question
whether causality also exists between them. This is especially
interesting for third-level aspects of interest and second level aspect
of principal. Does complexity, for example, cause understandability
rules violations? Does low cohesion and high coupling cause poorly
written code? Such a causal study could be designed and performed
through a controlled experiment, in which the researchers would
control the amount of TD Principal in several variations of a system,
and seek the actual maintenance time (TD Interest) for different
amounts and types of TD Principal. The necessity (and difficulty) of
targeting causation, instead of correlation has been discussed in
detail in Dagstuhl 2014 on "Software Development Analytics" [44,
45].

• Replicate and Generalize. The results of this study have been ob
tained by studying well-known and high-quality Java projects.
Therefore, there is a need to replicate the case study in other lan
guages and projects of different levels of quality, so as to ensure the
generalizability of our results. Similarly, the results need to be
confirmed in different programming paradigms (other than object-
oriented). We note that such a study, supposing that both exten
sions are made, would require the addition of two new factors
(programming language and paradigm) and an inferential analysis
that would target the exploration of the effect of these two factors in
the identified relations

Extend the concepts of TD Principal and TD Interest to other types
of TD. By considering that this study limits the calculation of TD to code,
we believe that an interesting extension would be towards other types of
TD, such as architecture, requirements or documentation TD. For
instance, requirements debt could concern costs such as the delay of
developing features, whereas architecture debt could involve the
impossibility to evolve the system, or the effect on other quality attri
butes or even on the social aspects of the organization. Nevertheless,
given the level of abstraction of these concepts, we see this research
work more qualitative (e.g. involving experts) than quantitative.

7. Threats to validity

In this section, we discuss potential threats to the validity of our case
study: construct validity, reliability, and external validity [34]. Internal
validity is not considered, since causal relations are not in its scope.

Construct Validity is related to the way in which the selected phe
nomena are observed and measured. In this study the investigated
concepts are TD Principal and TD Interest. On the one hand TD Principal
is quantified through SonarQube. SonarQube is the most frequently used
tool for measuring TD Principal [3, 21], in the sense that is the most
widely used in research and practice. Although SonarQube is an estab
lished tool, it focuses on code TD, neglecting other types of TD, like
architecture debt, requirements debt, etc. According to Martini et al.
currently in industry static analyzers (such as SonarQube) are used to
analyze the source code in search of TD. Only in few cases out of the
respondents in their survey (15 companies) practitioners built their own
metrics tools for checking (language-specific) rules or patterns that can
warn the developers of the presence of TD [26]. In a similar discussion,
Yli-Huumo et al. [40] discuss SonarQube as the mostly used tool for
TDM in the eight development teams that they have involved in their
case study. Despite the identified limitations, especially in the level of
Architectural Technical Debt (ATD), SonarQube is considered as
extremely useful for code TD identification, monitoring, measurement
and prioritization. Additionally, although SonarQube could be

A. Ampatzoglou et al.

Information and Software Technology 128 (2020) 106391

15

configured to provide more accurate results (e.g., change remediation
times), such a practice is not prominent in the literature, where re
searchers do not perform any re-configuration of the tool [13], and [36].

On the other hand, in the literature there is no established way to
measure TD Interest. This is due to the fact that an accurate measurement
of interest would require the simultaneous maintenance of two software
solutions: an optimal and an actual one, and the anticipation of future
maintenance activities. Besides the inability to forecast future changes,
such an approach is unrealistic for two reasons: (a) there is no way to
define a universally accepted optimal system, and (b) it is cost inefficient
to maintain two real systems just aiming to accurately measure technical
debt interest. According to industrial practitioners, acknowledge that
there are no indicators that show the amount of interest paid or pre
dicted if the refactoring. Research prototype tools for interest assessment
are not employed in practice yet and should be integrated to provide
overall indicators to provide help to the stakeholders to estimate and
prioritize TD. Thus, the TD research community shall intensify their
work on introducing such tools and indicators [26]. Therefore, as the
current state-of-the-art stands TD Interest can only be assessed through
proxies. In this study, we selected metrics that assess maintainability as a
proxy of interest. More specifically, we selected ten object-oriented
metrics (grouped in 5 categories/aspects of TD Interest) measured at
source code, although, in literature, maintainability has been linked to
various metrics. Metrics’ selection was based on empirical evidence in
the literature suggesting that a combination of these metrics is the
optimal maintainability predictor [32]. The model for synthesizing the
aforementioned values in a unified value for TD Interest relies on solid
mathematical calculations, given the assumption that maintenance
effort is inversely proportional (linearly) to maintainability. This
assumption, although it cannot be validated without a controlled
experiment, relies on previous studies [38, 42] and is considered as
intuitive by the authors of this paper.

Additionally, we need to note that both TD Principal and TD Interest
are measured at source code level. However, TD is a wider concept that
represents inefficiencies at the whole software development lifecycle,
and therefore the source code analysis is not comprehensively studying
the phenomenon. Thus, our results are not representative of TD holis
tically as a phenomenon, but only of a subset of it. Nevertheless, code TD
is the most studied type of technical debt in the state-of-research [2] and
one of the most important in the industry [5]. Finally, with respect to
RQ3, we note that the results heavily rely on the classification schema
that we have proposed for Aspects of TD Principal. Although the schema
has not been validated and relies on the expert opinion of the senior
researchers of this study, it is developed in a systematic way. Thus, also
given the fact that such an endeavor could not be conclusive, we believe
that it serves the goal of this study, since it is explicitly presented and
acknowledges all of its inherent limitations.

With regard to reliability, we consider any possible researchers’ bias,
during the data collection and data analysis process. The design of the
study, concerning data collection, does not contain threats, since all data
are automatically extracted by tools, without any subjective configura
tion. Moreover, with respect to the data analysis process, to mitigate any
potential threats to reliability, three researchers were involved in the
process, aiming at double checking the work performed and thus
reducing the chances of reliability threats. Furthermore, the detailed
case study protocol presented in Section 4 enables the repetition of the
study, as well as the provision of a replication package8. However, we
need to note that the clustering of code smells under specific tag cate
gories is subjective and could have been differently performed. Never
theless, we believe that the clustering is intuitive and forms a well-
justified decision.

Concerning external validity, a potential threat to generalization is

the possibility that performing the study on different projects of
different languages might affect the retrieved correlations. However, we
believe that the selected projects, given their size and complexity,
represent a realistic real-world system. Additionally, the results of the
study are not applicable to non-object-oriented systems, in the sense that
TD Interest in such systems could not be assessed through properties such
as inheritance, coupling and cohesion, which are applicable only in OO
software modules. Finally, we note that since the interpretation of the
results is based solely on the understanding of the authors on the TD
concepts, and not through an additional qualitative study with industrial
stakeholders, they cannot be generalized to an industrial context,
without additional validation.

8. Conclusions

This study aims to investigate the interrelation between TD Principal
and TD Interest from two perspectives: (a) to understand the underlying
relations between the two concepts, and (b) to provide a way for effi
cient TD management. To achieve these goals, we have performed a case
study on 3600 classes retrieved from 10 Apache projects. The concepts
of TD Principal and TD Interest have been decomposed to multiple aspects
that assess different views of the concepts. Given the hierarchical
structure of the concepts (TD Principal and TD Interest) the Mantel test
has been used for the examination of their relation and Linear Mixed
Effects models for assessing the generalizability of the obtained results.
The results of the analysis suggested that TD Principal is related to TD
Interest, and that TD Principal is more closely related to the interest as
pects of size and coupling, followed by cohesion and complexity.
Regarding TD Principal aspects, the one that appears to be more strongly
interrelated to higher levels of interest is code smells, whereas by further
focusing on code smells, we have collected evidence that smells that
hinder source code understandability are the ones that are more urgent
to resolve in the sense that they are related to higher levels of TD Interest.
Given the aforementioned outcomes, various implications for re
searchers and practitioners have been drawn. In particular, regarding
practitioners we have suggested a strategy for technical debt prevention,
repayment, and prioritization, based on technical debt interest amount.

CRediT authorship contribution statement

Areti Ampatzoglou: Conceptualization, Methodology, Writing -
original draft, Writing - review & editing. Nikolaos Mittas: Methodol
ogy, Formal analysis, Software, Writing - original draft, Writing - review
& editing. Angeliki-Agathi Tsintzira: Software. Apostolos Ampatzo
glou: Conceptualization, Methodology, Writing - original draft, Writing
- review & editing. Elvira-Maria Arvanitou: Conceptualization, Meth
odology, Writing - original draft. Alexander Chatzigeorgiou: Concep
tualization, Methodology, Writing - original draft, Writing - review &
editing. Paris Avgeriou: Conceptualization, Methodology, Writing -
original draft, Writing - review & editing. Lefteris Angelis: Conceptu
alization, Methodology, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

Work reported in this paper has received funding from the European
Union Horizon 2020 research and innovation programme under grant
agreement No. 780572 (project: SDK4ED).

8 htt***ps://se.uom.gr/wp-content/uploads/interest-principal-empirical-
relation/replication.zip

A. Ampatzoglou et al.

Information and Software Technology 128 (2020) 106391

16

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.infsof.2020.106391.

References

[1] E. Allman, Managing technical debt”, Communication, ACM 55 (5) (May 2012)
50–55.

[2] N.S.R. Alves, T.S. Mendes, M.G. de Mendonça, R.O. Spínola, F. Shull, C. Seaman,
Identification and management of technical debt: A systematic mapping study, in:
Information and Software Technology, 70, Elsevier, 2016, pp. 100–121.

[3] Ar. Ampatzoglou, Ap. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou, The financial
aspect of managing technical debt: A systematic literature review, Information and
Software Technology 64 (Aug. 2015) 52–73. Elsevier.

[4] Ar. Ampatzoglou, Ap. Ampatzoglou, P. Avgeriou, A. Chatzigeorgiou, Establishing a
framework for managing interest in technical debt, in: 5th International
Symposium on Business Modeling and Software Design (BMSD 2015), Italy, 2015.

[5] Ar. Ampatzoglou, Ap. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou,
P. Abrahamsson, A. Martini, U. Zdun, K. Systa, The Perception of Technical Debt in
the Embedded Systems Domain: An Industrial Case Study, in: 8th International
Workshop on Managing Technical Debt (MTD’ 16), IEEE, Raleigh, NC, USA, Oct.
2016.

[6] Ar. Ampatzoglou, A. Michailidis, C. Sarikyriakidis, Ap. Ampatzoglou,
A. Chatzigeorgiou, P. Avgeriou, A framework for managing interest in technical
debt: an industrial validation, in: Proceedings of the 2018 International Conference
on Technical Debt (TechDebt 2018), ACM, Gothenburg, Sweeden, May 2018,
pp. 115–124.

[7] T. Besker, A. Martini, J. Bosch, The Pricey Bill of Technical Debt: When and by
Whom will it be Paid?, in: 33rd IEEE International Conference on Software
Maintenance and Evolution (ICSME) IEEE, Shangai, China, Sept. 2017, pp. 13–23.

[8] A. Chatzigeorgiou, Ap. Ampatzoglou, Ar. Ampatzoglou, T. Amanatidis, Estimating
the breaking point for technical debt, in: 7th International Workshop on Managing
Technical Debt (MTD’ 15), IEEE, Bremen, Germany, Oct. 2015, pp. 53–56.

[9] S.R. Chidamber, D.P. Darcy, C.F. Kemerer, Managerial Use of Metrics for Object
Oriented Software: An Exploratory Analysis, in: Transactions on Software
Engineering, 24, IEEE Computer Society, Aug. 1998, pp. 629–639.

[10] J.M. Conejero, R. Rodríguez-Echeverría, J. Hernández, P.J. Clemente, C. Ortiz-
Caraballo, E. Jurado, F. Sánchez-Figueroa, Early evaluation of technical debt
impact on maintainability, in: Journal of Systems and Software, 142, Elsevier,
2018, pp. 92–114.

[11] W. Cunningham, “The WyCash Portfolio Management System”, 7th International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA ’92), 1992.

[12] R.J. Eisenberg, A threshold-based approach to technical debt, ACM SIGSOFT
Software Engineering Notes 37 (2) (2012) 1–6. ACM.

[13] M. García-Valls, J. Escribano-Barreno, J. García-Muñoz, An extensible
collaborative framework for monitoring software quality in critical systems, in:
Information and Software Technology, 107, Elsevier, 2019, pp. 3–17.

[14] M. Harman, The current state and future of search-based software engineering.
Future of Software Engineering (FOSE’07), IEEE, 2007, pp. 342–357.

[15] ISO/IEC 9126-1:2001, Software engineering - Product quality (Part 1: Quality
model), 2001. Geneva, Switzerland.

[16] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, A. Shapochka,
A case study in locating the architectural roots of technical debt, in: 37th
International Conference on Software Engineering (ICSE) 2, IEEE/ACM, Florence,
Italy, May 2015, pp. 179–188.

[17] J.W. Keung, B.A. Kitchenham, D.R. Jeffery, Analogy-X: Providing statistical
inference to analogy-based software cost estimation, in: Transactions on Software
Engineering, 34, IEEE, May 2008, pp. 471–484, 23.

[18] M.V. Kosti, A. Ampatzoglou, A. Chatzigeorgiou, G. Pallas, I. Stamelos, L. Angelis,
Technical Debt Principal Assessment Through Structural Metrics, in: 43rd
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), Vienna, Austria, 2017.

[19] P. Kruchten, R.L. Nord, I. Ozkaya, Technical Debt: From Metaphor to Theory and
Practice, Software 29 (6) (2012) 18–21. IEEE.

[20] J.L. Letouzey, M. Ilkiewicz, Managing Technical Debt with the SQALE Method,
Software 29 (6) (2012) 44–51. IEEE.

[21] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical debt and its
management, Journal of Systems and Software 101 (March 2015) 193–220.
Elsevierv.

[22] W. Li, S. Henry, Object-oriented metric that predict maintainability, Journal of
Systems and Software 23 (2) (November 1993) 111–122. Elsevier.

[23] A. MacCormack, D.J. Sturtevant, Technical debt and system architecture: The
impact of coupling on defect-related activity, Journal of Systems and Software 120
(2016) 170–182. Elsevier.

[24] N. Mantel, The detection of disease clustering and a generalized regression
approach, Cancer research 27 (2) (1967) 209–220.

[25] R. Martin, Agile Software Development, Principles, Patterns, and Practices.
Prentice Hall PTR, 3rd edition, 2003.

[26] A. Martini, T. Besker, J. Bosch, Technical debt tracking: Current state of practice: A
survey and multiple case study in 15 large organizations, in: Science of Computer
Programming, 163, Elsevier, 2018, pp. 42–61.

[27] S.H. Misra, Modeling design/coding factors that drive maintainability of software
systems, in: Software Quality Journal, 13, Springer, 2005, pp. 297–320.

[28] A. Nugroho, J. Visser, T. Kuipers, An empirical model of technical debt and
interest. 2nd International Workshop on Managing Technical Debt (MTD’ 11),
ACM, Hawaii, USA, May 2011, pp. 1–8.

[29] M. O’ Keeffe, M.O. Cinnéide, Search-based refactoring for software maintenance,
Journal of Systems and Software 81 (4) (2008) 502–516.

[30] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, K. Deb, “Multi-criteria code
refactoring using search-based software engineering: An industrial case study’,
ACM Transactions on Software Engineering and Methodology (TOSEM) 25 (3)
(2016) 1–53.

[31] J. Pinheiro, D. Bates, Mixed-effects models in s and s-plus, Springer Science and
Business, 2006.

[32] M. Riaz, E. Mendes, E. Tempero, A systematic review of software maintainability
prediction and metrics, in: 3rd International Symposium on Empirical Software
Engineering and Measurement, IEEE, Florida, USA, 2009, pp. 367–377.

[33] P. Rovegård, L. Angelis, C. Wohlin, An empirical study on views of importance of
change impact analysis issues, Transactions on Software Engineering 34 (4) (2008)
516–530. IEEE.

[34] P. Runeson, M. Host, A. Rainer, B. Regnell, Case Study Research in Software
Engineering: Guidelines and Examples, Wiley, 2012.

[35] K. Schmid, On the limits of the technical debt metaphor some guidance on going
beyond. 4th International Workshop on Managing Technical Debt (MTD ‘13), IEEE
Computer Society, San Francisco, USA, May 2013, pp. 63–66, 18 - 26.

[36] M. Schnappinger, M.H. Osman, A. Pretschner, A. Fietzke, Learning a classifier for
prediction of maintainability based on static analysis tools, in: Proceedings of the
27th International Conference on Program Comprehension, IEEE Press, 2019,
pp. 243–248.

[37] A.A. Tsintzira, Ar. Ampatzoglou, O. Matei, Ap. Ampatzoglou, A. Chatzigeorgiou,
R. Heb, Technical Debt Quantification through Metrics: An Industrial Validation,
in: 15th China-Europe International Symposium on Software Engineering
Education (CEISEE’ 19), IEEE TEMS, Lisbon-Caparica, Portugal, May 2019.

[38] C. van Koten, A. Gray, An application of Bayesian network for predicting object-
oriented software maintainability, Information and Software Technology 48 (1)
(2006) 59–67. Elsevier.

[39] L. Xiao, Y. Cai, R. Kazman, R. Mo, Q. Feng, Identifying and quantifying
architectural debt, in: 38th International Conference on Software Engineering
(ICSE), IEEE/ACM, Austin, TX, USA, May 2016, pp. 488–498.

[40] J. Yli-Huumo, A. Maglyas, K. Smolander, How do software development teams
manage technical debt?–An empirical study, Journal of Systems and Software, 120
(2016) 195–218. Elsevier.

[41] N. Zazworka, A. Vetró, C. Izurieta, S. Wong, Y. Cai, C. Seaman, F. Shull,
“Comparing four approaches for technical debt identification", Software Quality
Journal 22 (3) (Sept. 2014) 403–426. Springer.

[42] Y. Zhou, H. Leung, Predicting Object-Oriented Software Maintainability using
Multivariate Adaptive Regression Splines, Journal of Systems and Software 80 (8)
(2007) 1349–1361. Elsevier.

[43] J.D. Evans, Straightforward Statistics for the Behavioral Sciences, Brooks / Cole
Publishing, Pacific Grove, California, USA, 1996.

[44] M. Di Penta, Combining quantitative and qualitative methods (when mining
software data), Perspectives on Data Science for Software Engineering, Morgan
Kaufmann, 2016, pp. 205–211.

[45] T. Menzies, Correlation is not causation (or, when not to scream “Eureka!”), ,
Perspectives on Data Science for Software Engineering, Morgan Kaufmann, 2016,
pp. 327–330.

A. Ampatzoglou et al.

https://doi.org/10.1016/j.infsof.2020.106391
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0001
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0004
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0005
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0009
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0010
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0014
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0015
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0032
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0034
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0035
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0036
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0037
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0038
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0040
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0041
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0042
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0044
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0045
http://refhub.elsevier.com/S0950-5849(20)30156-7/sbref0045

	Exploring the Relation between Technical Debt Principal and Interest: An Empirical Approach
	1 Introduction
	2 Related work
	2.1 Relation between TD Principal and Interest
	2.2 Quantification of TD Interest

	3 Background information
	3.1 TD Principal Calculation
	3.2 TD Interest Calculation

	4 Case study design
	4.1 Research Objectives and Research Questions
	4.2 Case Selection and Unit Analysis
	4.3 Data Collection and Pre-Processing
	4.4 Data Analysis Methodology
	4.4.1 Mantel Test
	4.4.2 Statistical Inferential Process

	5 Results
	5.1 Relation between TD Principal and Interest (RQ1)
	5.2 Relation between TD Principal and Aspects of TD Interest (RQ2)
	5.3 Relation between Aspects of TD Principal and TD Interest (RQ3)

	6 Discussion
	7 Threats to validity
	8 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	Supplementary materials
	References

