
The Journal of Systems & Software 174 (2021) 110892

M

t
(
t
t

v
t
Q
b
a
h
s
c
p

e
(
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Change impact analysis: A systematicmapping study✩

aria Kretsou a, Elvira-Maria Arvanitou b, Apostolos Ampatzoglou b,∗,
Ignatios Deligiannis c, Vassilis C. Gerogiannis d

a Department of Informatics, Open Hellenic University, Patras, Greece
b Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
c Department of Information & Electronic Engineering, International Hellenic University, Greece
d Department of Digital Systems, School of Technology, University of Thessaly, Greece

a r t i c l e i n f o

Article history:
Received 7 July 2020
Received in revised form 28 October 2020
Accepted 22 December 2020
Available online 28 December 2020

Keywords:
Change impact analysis
Change proneness
Instability
Changeability
Amount of change

a b s t r a c t

Change Impact Analysis (CIA) is the process of exploring the tentative effects of a change in other
parts of a system. CIA is considered beneficial in practice, since it reduces cost of maintenance and
the risk of software development failures. In this paper, we present a systematic mapping study that
covers a plethora of CIA methods (by exploring 111 papers), putting special emphasis on how the
CIA phenomenon can be quantified: to be efficiently managed. The results of our study suggest that:
(a) the practical benefits of CIA cover any type of maintenance request (e.g., feature additions, bug fix-
ing) and can help in reducing relevant cost; (b) CIA quantification relies on four parameters (instability,
amount of change, change proneness, and changeability), whose assessment is supported by various
metrics and predictors; and (c) in this vast research field, there are still some viewpoints that remain
unexplored (e.g., the negative consequences of highly change prone artifacts), whereas others are
over-researched (e.g., quantification of instability based on metrics). Based on our results, we provide:
(a) useful information for practitioners—i.e., the expected benefits of CIA, and a list of CIA-related
metrics, emphasizing on the provision of a detailed interpretation of their relation to CIA; and
(b) interesting future research directions—i.e., over- and under-researched sub-fields of CIA.

© 2020 Elsevier Inc. All rights reserved.
r
(
a
(
(
c
9
(
a
(
a

u
f
f
n
1
a

1. Introduction

Change Impact Analysis (CIA) is the process of investigating
he undesired consequences of a change in a software module
Bohner, 2000); and is considered of paramount importance, in
he sense that it aims to reduce the risk of software failure and
he maintenance cost.

With respect to the aim of reducing the risk of software de-
elopment failures, project managers can invest on effective CIA
o mitigate the negative consequences of a change (Aljohani and
ureshi, 2016). In traditional risk management, risks are assessed
y estimating two parameters (Boehm, 1991): the probability of
risk to occur; and the impact that the occurrence of a risk will
ave. Tailoring this definition to fit software changes, by con-
idering them as possible risks, the above parameters (namely:
hange impact parameters) can be interpreted as follows: (a) the
robability of a software artifact to change; and (b) the effort

✩ Editor: [BURAK TURHAN].
∗ Corresponding author.

E-mail addresses: mkretsou@gmail.com (M. Kretsou),
.arvanitou@uom.edu.gr (E.-M. Arvanitou), a.ampatzoglou@uom.edu.gr
A. Ampatzoglou), ignatios@it.teithe.gr (I. Deligiannis), vgerogian@uth.gr
V.C. Gerogiannis).
 t

ttps://doi.org/10.1016/j.jss.2020.110892
164-1212/© 2020 Elsevier Inc. All rights reserved.
required for undertaking the change. These parameters can be
further decomposed as follows—parameter a is decomposed to
a1 and a2; whereas parameter b is decomposed to b1 and b2,
espectively:
a1) change proneness, which is the probability of a software
rtifact to change—e.g., due to bug fixes, changing requirements
Jaafar et al., 2014);
a2) instability, which is the probability of a software artifact to
hange due to changes in other artifacts of the system (ISO/IEC
126-1:2001)
b1) amount of change is the extent of changes that are made on
software artifact (Arisholm et al., 2001);
b2) changeability is the ease of performing changes to a software
rtifact (ISO/IEC 9126-1:2001).
Additionally, with respect to maintenance cost , CIA can be

seful both before and after the application of the change. Be-
ore the application of the change, CIA can be useful for ef-
ort estimation. For example, knowing how many classes will
eed to be updated is an indicator of maintenance effort (Haney,
972)—related to change proneness, amount of change and change-
bility. After the application of a change, CIA can be useful for

est case prioritization. For instance, being aware of co-changing

https://doi.org/10.1016/j.jss.2020.110892
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110892&domain=pdf
mailto:mkretsou@gmail.com
mailto:e.arvanitou@uom.edu.gr
mailto:a.ampatzoglou@uom.edu.gr
mailto:ignatios@it.teithe.gr
mailto:vgerogian@uth.gr
https://doi.org/10.1016/j.jss.2020.110892

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892

a
c
i
5

c
p
c
(
(
p
c
c
f
o
t
n

w
m
p
b

(

(

(

l
o
t
o
m
o
r
o
i
w

d

requirements is an efficient way to prioritize test cases (Rovegard
et al., 2008)—related to instability. Thus, effective change impact
nalysis can be an important factor for reducing maintenance
ost, which is often substantial along the software lifecycle—
.e., the total maintenance cost is estimated to comprise at least
0% of total lifecycle costs (van Vliet, 1993).
To visualize the context of CIA, in Fig. 1, we present how the

hange impact parameters are used upon a change request. The
rocess starts by receiving a maintenance request, which can be
lassified into four different categories: (a) code enhancements;
b) bug fixes; (c) feature requests; and (d) refactoring suggestions
Palomba et al., 2018). Next, the software developer needs to
erform CIA, and get insights on which classes will need to
hange (change proneness), which other classes will need to be
o-maintained (instability), and how much effort he/she will need
or resolving the corresponding request (changeability and amount
f change). Based on this information, the developer is expected
o apply the change more efficiently, in terms of time required,
umber of introduced bugs, etc.
Given the importance of change impact analysis, in this study

e aim to provide an overview of the state-of-the-art on this do-
ain, through conducting a Systematic Mapping Study. The map-
ing study has been designed based on three goals, as described
elow:

g1) Practitioners’ Benefits from CIA: The exploration of how
CIA facilitates the application of each type of change can
be potentially useful for practitioners, in the sense that our
systematic mapping study highlights the practical benefits
resulted from performing CIA.

g2) CIA Parameters’ Quantification: Additionally, to achieve
efficient change management; practitioners should be
equipped with established quantification approaches.1 The
change impact parameters can be assessed either directly
or indirectly. As direct assessment, we refer to software
metrics or methods that could calculate the aforemen-
tioned change impact parameters; whereas, as indirect
assessment, we refer to the use of existing metrics that can
be used for proxying their values. Therefore, through this
mapping study, we aim at providing a detailed panorama
on the existing practices for quantifying change impact
parameters.

g3) Research Goals: Finally, a common goal of secondary stud-
ies is the identification of the mostly researched sub-areas
of a field, and the identification of possible gaps. Thus, in
this study, we aim at providing an overview of the research
goals of primary studies, to fulfill the aforementioned ex-
pectation.

The main findings of this study are presented as a synthesized
ist of benefits for practitioners (by applying CIA) for each type
f maintenance request, a list of quality properties and metrics
hat can be used for performing CIA, and a view of under- and
ver-studied themes in this research area. Based on the afore-
entioned results, we are able to provide a detailed discussion
n the implications of this study for practitioners and a research
oadmap for change impact analysis. The rest of the paper is
rganized as follows: In Section 2, we discuss related work that
s relevant to change impact analysis, whereas, in Section 3,
e present the adopted systematic mapping protocol. Next, in

1 One of the most well-known quotes in software engineering, the one by
e Marco (1986), suggests that ‘‘you can’t control what you can’t measure’’. In

other words, you cannot assess improvement in one aspect, if there is no way
to quantify it.
2

Section 4 we present the results of our study, and in Section 5
we provide a research roadmap. Finally, in Section 6, we present
threats to validity, and in Section 7 we conclude the paper,
focusing primarily on the actionable outcomes of this study for
practitioners.

2. Related work

In this section, we present related work: i.e., secondary stud-
ies (i.e., Systematic Literature Review—SLR, or Systematic Map-
ping Study—SMS) that are directly or indirectly comparable to
ours. First, we present the two directly related secondary studies,
i.e., those that focus on change impact analysis, and next, studies
that focus on maintainability prediction, i.e., studies that are
related to the change impact parameters (indirect related work).
We note that from this section, we have excluded studies that
focus on specific technologies or application domain (e.g., Alam
et al., 2015a,b; Brink et al., 2016; Saraiva et al., 2012, respectively)
in the sense that results and research methods are not compara-
ble. Finally, in the end of this section, we provide an overview of
the comparison between our and related work.

Change Impact Analysis. Malhotra and Bansal (2016) performed
a literature review on change prediction—i.e., if an artifact is
going to change or not. In particular, the goal of this study was
to identify: (a) the goal of each study; (b) the types of dataset
that are used for prediction; (c) the kind of metrics that are
used in the prediction of changes; (d) the usefulness of machine
learning methods; and (e) the most popular journal in the area.
The search process is conducted between 1998 and 2011. The au-
thors have classified the papers into two categories based on the
type of metrics used: papers which have used class level metrics
(9 studies) and papers which have not used class level metrics
(12 studies). The results suggest that object-oriented measures
have a strong predictive power on the phenomenon. In a follow-
up study, Malhotra and Khanna (2019) performed a systematic
literature review to compare the capabilities of existing software
change prediction (SCP) models and evaluate their effectiveness.
The study focused on identifying: (a) the predictors that are useful
for developing SCP models; and (b) the experimental settings,
the categories of data analysis algorithms, the statistical tests and
the threats with respect to SCP studies. The search process was
conducted between 2000 and 2019 in five DLs (namely Scopus,
ACM, Wiley, IEEE, and SpringerLink), identifying 38 primary stud-
ies. The results suggested that structural metrics, and in particular
CK metrics, have been widely used in SCP models. However, the
validation of process metrics and their combination with product
metrics is limited in this domain. The main difference of both
works compared to ours is that our study is more comprehensive
in the sense that it focuses on all change impact parameters and
not only the change proneness, i.e., it also explored instability,
change amount and changeability.

(Li et al., 2013) conducted a literature review of code-based
change impact analysis techniques. More specifically, the study
focused on identifying: (a) the techniques for performing CIA;
(b) the properties that could characterize code-based CIA; (c) the
key application areas; and (d) future work. The search process
is performed in four digital libraries (namely ACM, IEEE, Sci-
enceDirect, and SpringerLink) from 1997 to 2010. After applying
the selection criteria, 30 studies were identified. The results of
their study revealed 23 different CIA techniques. Additionally,
the authors provide a framework that the practitioners could
identify and compare different CIA techniques, based on the
specific needs of the practitioner, whereas researchers could use
the suggested framework to develop new techniques. Alam et al.
(2015a,b) performed a systematic literature review to explore
the impact analysis and change propagation in Business Process

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892

M
p
p
p
s
e
A
t
d
f
d
e
m
a
t
T
a
c
o
(
w
o
e
c
S
o

M
m
m
t
m
q
i
r
s
i
v
w
i
o
a
f
r
m
m

m

Fig. 1. Change impact analysis process.
anagement (BPM) and Service-Oriented Architectures (SOA). In
articular, the study focused on: (a) identifying changes and de-
endencies across different abstractions layers; and (b) classifying
ropagation techniques and change analysis in two domains. The
earch process was applied on six DLs (namely: ACM, IEEE, Sci-
nceDirect, SpringerLink, Wiley, and Emerald) from 2007 to 2014.
t the end of the selection process 60 primary studies were re-
ained for further analysis. The results of the study suggested that
ependency analysis is the most frequently adopted technique
ollowed by traceability. Additionally, further categorization of
ependency analysis indicates that graph-based techniques are
xtensively used, followed by formal dependency modeling. The
ajority of change propagation solutions are top-down and semi-
utomated. Moreover, there are no mature tools and techniques
o provide end-to-end change analysis and propagation support.
he difference compared to our work is that Li et al. (2013)
nd Alam et al. (2015a,b) do not deal with quality metrics or
hange impact parameters. Additionally, Li et al. (2013) focus
nly in techniques that are based on source-code and Alam et al.
2015a,b) focus only in two specific domains, whereas in our
ork we focus on studies, which can be applied to any type
f software artifact and generic domain. On top of that Alam
t al. (2015a,b) considered any kind of dependency analysis as
hange impact analysis, which if generalized outside BPM and
OA, would lead to a tremendous amount of studies that focus
n the coupling between classes.

aintainability Metrics. Arvanitou et al. (2017a) conducted a
apping study to investigate design-time quality attributes and
etrics. In particular, the authors explored: (a) the most impor-

ant quality attributes for each application domain and develop-
ent phase, and (b) the use of quality metrics for assessing each
uality attribute. For the quality metrics, the authors identified
f the quality metrics use a formula for quantifying quality met-
ics, the empirical evidence of each metric and if there is tool
upport for automatically calculating them. The search strategy
dentified papers until 2016 and was conducted on 12 specific
enues. At the end of the selection process, 154 primary studies
ere selected. The results of the study suggest that maintainabil-

ty is the most commonly studied quality attribute, regardless
f the application domain or the development phase. Addition-
lly, quality properties (e.g., cohesion, coupling, etc.) are more
requently studied than quality attributes (e.g., maintainability,
eusability, etc.) and quality attributes is performed by a single
etric rather than a function of multiple metrics, and quality
etrics are mostly validated in an empirical setting.
Riaz et al. (2009) presented a systematic review of software
aintainability prediction and metrics. More specifically, the

3

study focused on identifying forecasting methods/techniques for
maintainability prediction and the level of evidence in these
methods. The search process was conducted in 9 digital libraries
(namely Scopus, IEEE, Current Contents and Computer Database,
ScienceDirect, SpringerLink, Inspec, ACM, and ProQuest Comput-
ing) from 1985 to November 2008. After applying the selection
criteria, 14 studies were selected. The results of this study suggest
that the most important predictors were those based on size,
complexity and coupling at source code level. Another outcome
of this study is that the level of evidence was found limited for
validating maintainability prediction techniques compared to the
models of van Koten and Gray (2006), and Zhou and Xu (2008).
Additionally, Jabangwe et al. (2014) performed a literature review
to (a) identify object-oriented measures at the source code level,
which they have been empirically evaluated, and linked to exter-
nal quality attributes, and (b) evaluate the consistency of the link
between them across studies. The search strategy was conducted
in five digital libraries (ACM, IEEE, Scopus, Compendendex and
Inspec) until 2012. After the selection criteria, the authors were
selected 99 studies. Then, Jabangwe et al. (2014) focused on four
specific quality attributes: reliability, maintainability, efficiency
and functionality. The results suggest that the most commonly
studied quality attribute is maintainability, which in most of the
cases is quantified through the Chidamber and Kemerer (CK) met-
ric suite (1994). The studies of Riaz et al. (2009), and Jabangwe
et al. (2014) are related to ours; however, they both focus on
maintainability rather than change impact analysis, i.e., they are
broader in scope. Finally, Saraiva et al. (2012) performed a map-
ping study to investigate which metrics can be used to measure
the maintainability of software developed with Aspect-Oriented
Programming (AOP). The search strategy identified papers until
June 2011 and was conducted on four DLs (IEEE, ACM, Compen-
dex and ScienceDirect). At the end of the study identification
process, 138 primary studies were selected. The results proposed
a catalog that can guide researchers in selecting metrics that are
suitable for their studies. The differences of this work compared
to our study is that Saraiva et al. (2012) focus on a specific
programming paradigm (i.e., AOP) and a specific quality attribute
(i.e., maintainability).

Malhotra and Chug (2016) conducted a systematic literature
review in the field of software maintainability to identify impor-
tant aspects which could affect maintenance effort. More specif-
ically, the study focused on identifying techniques, metrics, and
tools that are related with maintainability. The search strategy
was conducted in nine DLs (namely Google Scholar, Scopus, Sci-
enceDirect, Springer, ACM, IEEE, Wiley, Web of Science and Com-
pendex) from 1991 to 2015: retaining 96 primary studies. The

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892

b
s
w
i
e
n
w

s
c
p
t
p
s
o
d
N
(
a
e
c
n
t
c
n
c
2
t
i
c
t

3

s
t
c
s

3

M
c
z

3

P
c
p
d
r
p
i
i
f
m
p

T
e

results suggested that design metrics are still the most favored
option for capturing the characteristics of any given software,
and in particular the metrics suites proposed by Chidamber and
Kemerer (1994) and Li and Henry (1993). Finally, Benestad et al.
(2009) performed a literature review on change-based studies
(i.e., analyze data that describe the individual changes that are
made to software). More specifically, the goal of this study was
to identify change attributes and change measures that drive and
predict costs and risks during maintenance and evolution. The
search strategy was applied on two DLs (namely: Google Scholar
and IEEE) from 1993 to 2007. As an outcome, 34 primary stud-
ies were selected. Benestad et al. (2009) proposed a conceptual
model for change-based studies that enables them to classify
the attributes. The main differences of our study compared to
Benestad et al. (2009) is that our study does not aim at pro-
viding a classification of changes and their characteristics, but
on quantifying the important parameters while applying these
changes.

Comparison to Related Work. Next, we present the comparison
etween the related studies and our work, in terms of: amount of
tudies, covered period, and research contributions. For each study
e list the research method that they have used, the direct or

ndirect relation to CIA (as indirect we consider broader studies,
.g., on maintainability, that cover some change properties), the
umber of included papers, the period covered, and the overlap
ith our goals (see Table 1).
On the one hand, given Table 1, we can observe that our

tudy is a valuable extension of the research-state-of-the-art, by
onsidering the amount of studies and the covered period. In
articular, among directly comparable studies: two have finished
he data collection around 2010 (from 2010 and on, 80% of the
rimary studies of our dataset were published after 2010), one
tudy around 2015 (from 2015 and on, 45% of the primary studies
f our dataset were published after 2010), and one study with
ata collection ending on 2019 (consisting this study up-to-date).
evertheless, the scope of the review of Malhotra and Khanna
2019) was substantially narrower in scope, since it aimed only
t change proneness. Thus, the amount of studies that we consid-
red is almost doubled up. On the other hand, regarding research
ontributions, based on Table 1 and the previously presented an-
otated bibliography, our study is the only up-to-date secondary
hat discusses the practical benefits of change impact analysis,
onstituting the study as highly relevant for practitioners. We
ote that the study of Li et al. (2013) had a similar goal, but
aptured only a small fraction of primary studies, published until
010. Additionally, our study is the only one that discusses simul-
aneously all change impact parameters (i.e., change proneness,
nstability, amount of change, and changeability), enabling a fair
omparison in terms of the research load for each parameter, and
he identification of future research directions.

. Study design

This section presents the protocol of the systematic mapping
tudy. A protocol constitutes a pre-determined plan that specifies
he research questions and how the mapping study has been
onducted. Our protocol is presented according to the guidelines
uggested by Petersen et al. (2008).

.1. Objectives and research questions

The primary goal of this study, stated using the Goal-Question-
etrics (GQM) format (Basili et al., 1994) is to: analyze existing
hange impact analysis methods for the purpose of characteri-
ation with respect to the change impact parameters (namely:
4

change proneness, instability, amount of change, and changeabil-
ity) from the point of view of researchers and practitioners in the
context of software maintenance. Based on the aforementioned
GQM formulation and the goals stated in Section 1, we have set
the following research questions:

RQ1: What are the benefits for performing Change Impact Analysis
for practitioners?
RQ1 is related to the usefulness of CIA methods to practi-
tioners. In particular, we explore the motivation of primary
studies and identify the reasons for which practitioners
deem CIA as important. Answering this research ques-
tion will shed light on the types of changes that can be
supported by CIA methods.

RQ2: How can change impact parameters be assessed?
RQ2 aims at exploring change impact parameters quantifi-
cation. In particular, we aim at highlighting: (a) the most
studied change impact parameters for each development
phase, (b) the most used software artifacts for the quan-
tification of each CIA parameter; (c) the most important
metrics for quantifying each CIA parameter directly; and
(d) the most important metrics for indirectly quantifying
each CIA parameter.

RQ3: What is the goal of researchers when setting up their primary
studies?
RQ3 is related to the research goals of studies related to CIA.
In particular, we focus on researchers and investigate the
goals of the primary studies so as to extract: (a) the most
studied research sub-areas; and (b) possible research gaps
that deserve future investigation.

.2. Search process

ublication Venue Selection. We defined our search strategy by
onsidering the goal and research questions of the study. In
articular, we opted for performing an automated search, through
igital libraries (DL) portals, on specific publication venues. The
easoning behind this decision is our intention to retrieve only
rimary studies that are of guaranteed top-quality—such a choice
s well acknowledged as a best practice in software engineer-
ng secondary research (Kitchenham et al., 2009a,b). Despite the
act that the assessment/controlling of the quality of the pri-
ary studies is not a prerequisite for mapping studies, we have
referred to focus on top quality venues for two reasons:

• Studying a Broad Research Area. According to the recent
guidelines on how to identify and report threats to validity
for secondary studies (Ampatzoglou et al., 2019): ‘‘In case
the research team is investigating a very broad topic, or is
interested in including only top-quality venues, venue selection
processes are described in Cai and Card (2008), Galster et al.
(2014) and Kitchenham et al. (2009a).’’. Therefore, our deci-
sion is reasonable, since our study covers a very broad topic,
which would be unmanageable if we targeted complete
databases.

• Mitigation of Data Validity Threat: Additionally, even for
SMS, the quality of the primary studies is an important
factor for the quality of the secondary study. As explained in
the guidelines on managing threats to validity for secondary
studies (Ampatzoglou et al., 2019), the selection of top-
quality venues is the top mitigation action for the threat
to validity: ‘‘Quality of Primary Studies’’ categorized under
‘‘Data Validity’’.

he venues have been selected based on the study of Karanatsiou
t al. (2019), which is the latest article of the well-known series

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892

p
d
T
c
f
s
f
(
w
a
w
t
n
t

Table 1
Related work overview.
Reference Research

method
Relation
to CIA

#papers Period Practice
(goal-1)

Parameters (goal-2) Research
(goal-3)

Malhotra and Bansal (2016) SLR Direct 21 1998–2011 Change proneness X
Malhotra and Khanna (2019) SLR Direct 38 2000–2019 Change proneness X
Li et al. (2012) SLR Direct 30 1997–2010 X X
Alam et al. (2015a,b) SLR Direct 60 2007–2014 X
Arvanitou et al. (2017a) SMS Indirect 154 Until 2016 Change proneness instability changeability
Saraiva et al. (2012) SMS Indirect 138 Until 2011 Change amount
Riaz et al. (2009) SLR Indirect 14 1985–2008 Amount of change
Jabangwe et al. (2014) SLR Indirect 99 Until 2012 Change proneness changeability amount of change
Malhotra and Chug (2016) SLR Indirect 96 1991–2015
Benestad et al. (2009) SLR Indirect 34 Changeability amount of change
Our study SMS Direct 111 Until 2019 X Change proneness instability changeability change amount X
Table 2
Selected venues.
Publication venue DL

Transactions on Software Engineering (TSE)

IEEE

International Conference on Software Engineering (ICSE)
Symposium on Empirical Software Engineering and
Measurement (ESEM)
International Conference on Automated Software
Engineering (ASE)
International Conference on Software Processes (ICSP)
International Conference on Software Analysis, Evolution
and Reengineering (SANER)/previously CSMR and WCRE
International Conference on Software Maintenance and
Evolution (ICSME)
IEEE Software (SW)

Transactions on Software Engineering and Methodology
(TOSEM) ACM

International Symposium on the Foundations of Software
Engineering (FSE)

Empirical Software Engineering (ESE) Springer

Software: Practice and Experience (SPE) WileyJournal of Software: Evolution and Process (JSEP)/previously
JSME

Information and Software Technology (IST) ScienceDirectJournal of Systems and Software (JSS)

of bibliometric papers for top-scholars and institutes in software
engineering. The venue selection process is based on four cri-
teria; we selected venues that: (a) are classified as ‘‘Computer
Software’’ by the Australian Research Council with an evaluation
higher than or equal to level ‘‘B’’ for both journals and con-
ferences; (b) are strictly relevant to the software engineering
domain; (c) on average have more than 1 citation per month,
per published article; and (d) are general-scope journals, not
restricted to phases or activities—with the only exception to
maintenance venues, which are of special interest to this study
(e.g., CSMR/WCRE, ICSME, SANER, JSME). In Table 2 we present
the selected venues.

Search String Construction—Study Identification. Next, we ap-
lied our search string (see box below) on the full-text of can-
idate primary studies, published in the aforementioned venues.
he goal of this step was to return studies that are relevant to
hange impact analysis. To construct the search string, we have
ollowed a systematic process. First, based on the goals of this
tudy, we have split our search string into two components: the
irst one is related to change impact analysis and its parameters
see Section 1), whereas the second has been added due to RQ2,
hich restricts our goal to studies that propose, use, or evaluate
metric or a method for CIA. An alternative on the first part,
ould be the use of the term ‘‘software change’’, but applying
his term on the full text would return many irrelevant results,
ot being able to contribute to answering the set research ques-

ions. We note that we have piloted this decision on the first 5

5

pages on Google Scholar, verifying our belief that broadening the
search string would needlessly increase the amount of retrieved
studies (in the sense that the majority of these studies would be
excluded in later stages). Regarding the second part, we used two
alternatives for measurement and the term ‘‘method’’ to retrieve
studies that assess CIA, but not through metrics. By considering
that the search was conducted in the full text of the publication,
we strongly believe that these terms would appear at least ones in
a relevant manuscript. To validate the final version of the search
string, we have performed a piloting before applying it to all
venues. In particular, we have checked that all primary studies
of a broader secondary study (i.e., (Arvanitou et al., 2017b))
published in three venues (namely TSE, IST, and JSS) have been
retrieved from applying our search string.

((‘‘change impact analysis’’ OR ‘‘change proneness’’ OR
‘‘changeability’’ OR ‘‘instability’’ OR ‘‘change amount’’) AND
(‘‘metric’’ OR ‘‘method’’ OR ‘‘measurement’’))

Although no publication indexing sites (e.g., Scopus, Google
Scholar, etc.) have been used, we have performed this step, since
some conferences publish their papers in more than one digital
library, e.g., ESEM conference is hosted in ACM and IEEE DLs.

Studies Filtering Phase. The next step of the process was to
identify all the primary studies that are relevant to this mapping
study. To this end, we have set several inclusion and exclusion
criteria, applying a systematic process. The definition of the inclu-
sion criteria has been based on the goal of the study: first, it was
mandatory to assess the paper as relevant to CIA. Second, there
was a need for the discussion around the metric/measure process
to be central in each candidate primary study. The definition
of exclusion criteria followed the most classic ones from the
literature. Studies to be included in the final dataset had to satisfy
the first Inclusion Criterion (IC) and one or more of the rest ICs,
whereas at the same time, they were not satisfying any Exclusion
Criteria (EC):

IC1 AND (IC2 OR IC3) AND NOT (EC1 OR EC2)

The inclusion criteria of our systematic mapping study are:

• IC1: The study is related to change impact analysis;
• IC2: The study defines one or more change impact parame-

ters;
• IC3: The study defines one or more quality metrics;

The exclusion criteria in our mapping study are:

• EC1: The study is written in a language other than English;

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892

t
a
t
c

3

d
f
v
[
[
[
[
[
[
r
[
v
[
r
[
c
[
C
[
d
[
r

f
e
i
b
t
m
T

• EC2: The study is an editorial, invited/position/opinion pa-
per, keynote, tutorial, poster or panel.

The article filtering phase has been handled by the first three
authors of this study, using the voting method, as described
by Farhoodi et al. (2013). The first three authors inspected the
publication’s full text and assigned a vote on a 4-point scale
(4: strong inclusion, 1: string exclusion)—leading to a maximum
score of 12 points. Following the threshold used by Farhoodi
et al. (2013), we retained studies with a score higher to 8 points.
Studies that were marked with exactly 8 points (12 in total),
were reviewed and discussed with the four and fifth authors of
the study. To ensure that the researchers involved in the data
collection shared a common understanding of the inclusion cri-
teria, first a thorough discussion among authors was performed.
Next, we piloted the first 30 papers, which have been assessed in
pairs by the four authors so as to have an open discussion on the
voting scores. All authors explained their scores, until a consensus
was reached. The high degree of a common understanding on
the criteria is supported by the low disagreement rate in the
inclusion exclusion phase (i.e., 1.7%). We note that the exclusion
criteria (language and type of paper) are straightforward and no
validation or piloting was required.

Search Process Overview. In Fig. 2, we present an overview of
he search and filtering process along with the number of studies
t each phase. At the end, we have retained 99 primary studies
o be included in this mapping study, and proceed with data
ollection—see Appendix A.

.3. Data collection

As part of data extraction, for all included studies, we have
efined a set of variables that describe each primary study. Thus,
or every study, we have recorded the values of the following
ariables:
V1] Publication Title
V2] Author: List of authors
V3] Year: Publication year
V4] Type of Paper: Conference or journal
V5] Publication Venue: Name of the conference or journal
V6] Benefit from performing CIA (e.g., reduce debugging time,
educe time to add feature, etc.)
V7] Research Goal set in the primary study (e.g., propose or
alidate a novel CIA metric, etc.)
V8] Development Phase: Investigated development phase (e.g.,
equirements, architecture, design)
V9] Type of Software Artifact: Explored software artifacts (e.g.,
lass diagram, use case, etc.)
V10] Change Impact Parameters: Change Proneness, Instability,
hangeability, Amount of Change
V11] Quality Metrics or Method: Novel metrics or methods for
irectly quantifying CIA parameters
V12] Predictors of CIA parameters: Existing metrics for indi-
ectly assessing the CIA parameters

To strengthen the validity of data extraction, we used the
ollowing systematic process. The first two authors independently
xtracted data. If there were inconsistencies in the extracted
nformation, the involved authors discussed the inconsistencies
etween them. If they were not able to resolve the discrepancies,
he third author joined the discussion to resolve the disagree-
ent. During the process 15 inconsistencies have been resolved.
he dataset is available online.2

2 https://users.uom.gr/~a.ampatzoglou/aux_material/JSS2020_dataset.xls.
6

Table 3
Data analysis overview.
Research question Used variables Analysis method

RQ1 [V6] Open Card Sorting
Frequency tables

RQ2 [V8], [V9], [V10],
[V11], and [V12]

Frequency tables
Cross tabulation

RQ3 [V7] and [V10] Open Card Sorting
Frequency tables
Cross tabulation

3.4. Data analysis

Variables [V1] – [V5] have been used for documentation pur-
poses. The rest of the variables have been used for answering
the research questions and describing the context of the study.
For reporting purposes, we used common visualization methods
(e.g., bar charts, pie charts, etc.), frequency tables, and cross-
tabulation of variables. Also, for consolidating the values of vari-
ables retrieved from different studies, we have employed the
Open Card Sorting methodology (Spencer, 2009). An overview of
the data analysis overview, presenting the mapping between col-
lected variables, research questions, and data analysis methods,
is provided in Table 3.

During data analysis, as far as variables [V6] and [V7] are
concerned, we have noticed that the terminology used in the
various identified primary studies was quite diverse. In particular,
we have applied the Open Card Sorting methodology (Spencer,
2009): (a) recorded themes from the research goals as identified
in the primary studies (without any processing); (b) reviewed the
themes to find candidates for merging; and (c) defined the names
of the final themes. The first and the second author performed the
process of identifying the themes, and the third, four, and fifth
authors validated the results. During the consolidation process
on the themes’ extraction and their naming (i.e., [V6]), there
were some disagreements (approximately 6%), which have been
resolved by a discussion among the authors. On the other hand,
regarding since the naming of the themes and the distinction
was very clear from early in the data extraction process, the
amount of conflicts was very limited (<2%). Finally, since [V12]
was expected to lead to a vast number of existing metrics, as part
of meta-analysis, we recorded the quality property (e.g., coupling,
cohesion, complexity, inheritance, etc.) that the metric assesses.

4. Results

In this section we present the results of our study organized by
RQ. In Section 4.1, we discuss our findings related to the benefits
of CIA for the practitioners. In Section 4.2, we provide the most
studied change impact parameters and the proposed methods
for assessing them (directly or indirectly). Finally, in Section 4.3,
we present researchers-related results, i.e. most studied (and
understudied) sub-areas.

Initially, we provide some descriptive statistics (using frequen-
cies) for the dataset of primary studies. Based on the selection
process, we have retrieved 111 primary studies. Fig. 3 illustrates
the number of studies published per 5-year periods: we can
observe that after 2009 the number of studies has increased
substantially. Thus, in the last decade, researchers try to ex-
plore methods for performing CIA. Additionally, in Table 4 we
present the frequency of study per publication venue. We observe
that from the 111 primary studies, 83 studies are published in
journals, whereas 27 in conferences. Out of the 111 publica-
tions, 20 have been published in maintainability-related venues
(i.e., SANER, ICSME, and JSEP), suggesting that the topic is not

https://users.uom.gr/~a.ampatzoglou/aux_material/JSS2020_dataset.xls

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892

T
P

Fig. 2. Overview of search and filtering process.
r

Fig. 3. Publications years’ frequency.

able 4
ublication venues.
Publication venue #Studies

ESE 34
IST 19
JSS 14
JSEP/JSME 7
SANER/CSMR/WCRE 7
TSE 6
ICSME 6
ICSE 5
ESEM 6
SPE 3
ASE 2
FSE 1
SW 1

restricted to a dedicated community, but is deemed as important
to the whole software engineering community. We note that
since the number of studies is 111, there is no need to represent
data as percentages: the absolute number and the percentage are
very close.

4.1. Practitioners’ benefits from performing change impact analysis
(RQ1)

In this section, we present the results of our mapping study
related to the usefulness of performing CIA from the point of view
7

of practitioners. Out of this process, we have identified that 89
studies (80%) report an industrial motivation or implications for
practice, implying a high industrial relevance for these studies
(Ivarsson and Gorschek, 2011). Table 5 lists the most reported
benefits of CIA in the primary studies, organized into five (5)
themes, based on the outcome of the Open Card Sorting synthesis
process, described in Section 3.4 (Spencer, 2009). The vast ma-
jority of the studies were classified by using four themes having
identical names with the four software maintenance types pro-
posed by van Vliet (1993): Adaptive,3 Corrective,4 Preventive,5
and Perfective6 Maintenance, while there were only 4 primary
studies which have been classified to a fifth theme that was
relevant to Reuse.

Based on Table 5, we can observe that the dominant theme
of the reported benefits is Adaptive Maintenance (47%), followed
by Perfective Maintenance (17%) and Corrective Maintenance (9%).
Preventive Maintenance benefits are discussed in 6% of the studies,
whereas Reuse potential in 3%. The interpretation of how CIA
leads to these benefits and the rationale for the classification are
justified below:

• Adaptive Maintenance. The main benefit in this category
is the ‘‘Improvement of software maintenance tasks’’. This
benefit is obtained in terms of maintenance efficiency, since
every time that a new request arrives in the software de-
velopment company, the developer is aware of co-changing
artifacts; i.e., there is no need to identify which parts of
the system need update. In the relevant literature, the de-
crease of this mental process is reported to be more time-
consuming, compared to the application of the change per
se (Kosti et al., 2018). Additionally, CIA can aid developers
in the ‘‘Improvement of the accuracy of effort estimation’’: by
applying CIA, developers are not aware only of local changes
in the artifact to be updated, but also on the possible ripple
effects, which may increase maintenance costs up to 75%
(Galorath, 2008; Chen and Huang, 2009). Finally, the ‘‘Iden-
tification of cross-cutting concerns’’, which can be achieved
by identifying frequently co-changing artifacts (or system-
wide changes) is also useful, in the sense that architectural

3 Tasks related to the addition of new features, the migration to a new
untime environment, etc.
4 Tasks related to the fixing of bugs identified by the end-users/customers.
5 Tasks related to the identification of bugs, before the end-user.
6 Tasks related to the improvement of the system quality.

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892
Table 5
Frequency of the benefits obtained by performing CIA.
Benefits Themes #Studies

Improvement of software maintenance tasks Adaptive maintenance 50
Reduction of effort to refactor or Improve quality Perfective maintenance 13
Identification of fault-prone artifacts Preventive maintenance 7
Reduction of debugging time Corrective maintenance 6
Identification artifacts that are difficult to maintain Perfective maintenance 6
Improvement of reuse opportunities Reuse 4
Provision of assistance along test-case selection Corrective maintenance 3
Reduction in the number of introduced bugs Corrective maintenance 2
Improvement of the accuracy of effort estimation Adaptive maintenance 1
Identification crosscutting concerns Adaptive maintenance 1
p
p
c
(
(
(
i
o
p
c
q

C
t
i
c
a
s
t
a
(

changes (i.e., large-scale changes that are applied system-
wide) are usually costlier compared to local ones (Brown
et al., 2011); therefore, being aware of such changes can lead
to their efficient management.

• Perfective Maintenance. The benefit obtained by CIA in
terms of perfective maintenance, is two-fold: related to the
identification of design hotspots (i.e., parts of the system
that urge for quality improvement) and to the ease of
applying the quality optimization per se. On the one hand,
the ‘‘Reduction of Effort to Refactor or Improve Quality’’ is the
most studied benefit, which among others, is achieved by
the fact that developers are aware of the test that need to
be executed upon refactoring—that could be violated due
to ripple effects (Kabaili et al., 2005). On the other hand,
the ‘‘Identification Artifacts that are Difficult to Maintain’’ is
assisted by CIA, and in particular by the effort-related pa-
rameters: changeability and amount of change. Being aware
of the artifacts that are difficult to maintain, can lead to
a refactoring prioritization aiming at improving aspects of
quality (e.g., coupling, cohesion, complexity, etc.) that are
related to maintainability—a notion that is heavily exploited
in the technical debt community, through the concept of
interest probability (Arvanitou et al., 2017b).

• Corrective Maintenance. In terms of corrective maintenance,
the instability CIA parameter can aid in the ‘‘Reduction of
Debugging Time’’, since by performing CIA, the developer can
be aware of the classes that need to change along a set of
bug fixing activities (due to possible ripple effects). At mini-
mum (even if a change does not need to be applied to other
artifacts), the developer gets informed on a limited number
of tests that need to be executed through the ‘‘Provision of
assistance along test-case selection’’. Being aware of the tests
that need to be executed (e.g., in a regression testing phase)
is discussed by Kabaili et al. (2005), along with the relation
of this task with the existence of ripple effects/instability. A
consequence of the aforementioned benefits is the ‘‘Reduc-
tion in the Number of Introduced Bugs’’, due to the accurate
execution of all required tests, guarantees (to some extent)
the correct application of the software.

• Preventive Maintenance. With respect to preventive main-
tenance, we have been able to identify one related benefit,
namely ‘‘Identification of Fault-Prone Artifacts’’; which how-
ever, is referred in seven (7) identified studies. CIA can help
in identifying fault-prone artifacts by exploiting the change
proneness of artifacts, i.e., more change prone classes are
usually more error-prone as well (Khomh et al., 2012). Being
aware of the fault-prone artifacts may indicate the neces-
sity of introducing preventive/internal testing procedures to
those that have the higher probability to produce errors.

• Reuse. Finally, CIA can aid software engineers through the
‘‘Improvement of Reuse Opportunities’’. More specifically, ad/
hoc reuse practices, aim at the identification of reusable sets
of artifacts, based on dependency analysis (Ampatzoglou
8

Fig. 4. Frequency of change impact parameters.

et al., 2012). Being aware of which artifacts need to be
reused along with the targeted artifact (to minimize the
adaptation time), can be guided by instability and ripple
effect analysis, in the sense that they are both relying on
artifact dependencies (Arvanitou et al., 2015).

4.2. Quantification of change impact parameters (RQ2)

In this section, we focus on the quantification of change impact
parameters; thus, we focus only to studies that involve either
metrics/methods [V11] or predictors [V12] of a CIA parameter.
Initially as a demographic analysis, in Fig. 4, we present the
number of studies in which each change impact parameter has
been assessed.7 Based on Fig. 4, the most studied change impact
arameter is instability, followed by amount of change and change
roneness. An interesting observation from Fig. 4, is that the
hange impact parameters that are related to the risk probability
i.e., the probability of an artifact to change) are over-studied
∼63%), whereas only 37% focuses on the impact of the risk
i.e., how large chunks of code are going to be changed). This find-
ng can be attributed to the fact that the uncertainty of an event to
ccur is higher compared to the uncertainty of the extent of the
henomenon. Next, we discuss: (a) the ways of quantifying the
hange impact parameters: and (b) the study of CIA parameters
uantification in various development phases/artifacts.

hange Impact Parameters Quantification. As mentioned in Sec-
ion 1, change impact parameters can be quantified directly or
ndirectly. On the one hand, regarding the direct quantification of
hange impact parameters, the analysis process has led to various
nd numerous metrics, whose detailed presentation was not pos-
ible in the manuscript. Nevertheless, since we acknowledge that
his is a vital information for this study, in Appendix B, we present
glossary including: (a) the proposed metric; (b) its acronym;

c) its calculation method; and (d) a link to the original study.

7 We note that some studies might refer to more than one CIA parameter.

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892

T
e
T
e
m
t
A
b
m
(
m
p
b
a
i
a
t

p
p
a
d
o
a
c
r
t
a
l
i
w
i
T

The glossary is organized into subsections, based on the change
impact parameter that they quantify. Below, we discuss the main
ways, based on which each CIA parameter can be quantified. We
note that while discussing each CIA parameter, we present only
one representative reference, since the full list can be found in
Appendix B.

• Instability is assessed by 21 distinct metrics that can be
organized into three categories. The first and dominant cat-
egory, captures instability as the percentage of the system
that is affected by a given change—e.g., SDI (System Design
Instability) (Alshayeb and Li, 2005). The second category is
not calculated at the system level, but on the artifact pair
level, denoting the probability of one artifact to change due to
ripple effects—e.g., IF (Impact Factor) (Sun et al., 2014). The
final category is again a measure at system level, denoting
the scattering of changes inside files, classes, etc.—e.g., CD
(Change Dispersion) (Misirli et al., 2016).

• Change Proneness is assessed in the literature by 20 dis-
tinct metrics, which can be organized into four main cat-
egories. The first category, captures change proneness as
a frequency of commits/revisions in which an artifact (file,
class, method, etc.) has changed—e.g., NPC (Number of Prior
Changes) (Misirli et al., 2016). The second category relies on
time as unit and calculates the period of time in which an
artifact remains unchanged—e.g. AA (Average Age) (Moser
et al., 2004). The third category unifies metrics from the first
two categories. In particular, it normalizes the frequency
of commit changes as a percentage over the commit history,
trying to provide a fair assessment between codebases with
historical data at a different level of magnitude—e.g. LIKE-
LIHOOD (Mondal et al., 2018). The fourth category, aims at
exploiting the metric of the first category, so as to project
them to future commits, acting as predictors of artifact
evolution—e.g. Frequencies of Future Changes (Khomh et al.,
2019).

• Amount of Change is the CIA parameter with the most met-
rics in the literature (i.e., 25 distinct metrics). Despite their
variety most of these metrics are quite similar, and to
some extent simplistic (in the sense that they are cal-
culated as simple counts). The metrics are classified ac-
cording to two factors: (a) the type of change—i.e., add,
delete, modify, or both add and delete (churn); and (b) the
level of granularity (i.e., components, files, classes, methods,
lines of code, etc.). Therefore, combining the values of the
above factors, one can identify metrics such as: Number of
Added/Deleted/Modified Modules/Operations/Members/Classes/
Files (Tizzei et al., 2011; D’Amorim and Borba, 2012; Misirli
et al., 2016; Stevanetic and Zdun, 2018), Number of Added/
Deleted Lines of Code (Arisholm, 2006; Hindle, 2015), or
Number of Modified Lines/Total Churn (Woo et al., 2009). A
different line of thinking for quantifying amount of change
is the assessment of actual system size (e.g., Class/File/Line
Growth (Alshayeb and Li, 2005; Hindle, 2015; Misirli et al.,
2016), supposing that a change in these values denotes the
extent of changes among different versions of the software.

• Changeability has been associated with two distinct metrics:
namely, Effort of Change in Minutes (Arisholm et al., 2001;
Balogh et al., 2015) and Changeability Index (Decan et al.,
2019). We note that the low number of metrics or methods
for directly capturing changeability does not imply that this
parameter is not important, but that its direct quantification
is very straightforward in an after-the-fact (application of
maintenance) analysis, i.e., to record how much time or
effort a specific change has taken. However, the prediction
of changeability is a very interesting and challenging topic,
which has been investigated thoroughly in other secondary

studies (Jabangwe et al., 2014; Riaz et al., 2009).

9

Fig. 5. Frequency of the quality properties.

On the other hand, regarding indirect quantification, through ex-
isting metrics, we have followed a two-step analysis. First, sim-
ilarly to before, in Appendix C, we present the full mapping
among existing metrics, CIA parameters, and all identified pri-
mary studies. Second, we performed a meta-analysis to explore
the relation of CIA parameters and the quality properties that the
metrics are related to. In particular, Fig. 5 presents the frequencies
of the quality properties that are linked (indirectly) to change
impact parameters. For instance, at least one coupling metric is
used in 26 studies out of the 40 that use indirect CIA parame-
ters assessment (65%). The results suggest that the most studied
quality property for quantifying change impact parameters is
coupling, followed by size, complexity, inheritance, and cohesion.
his outcome is somehow expected in the sense that these prop-
rties are the most closely related to software maintainability.
his finding is also supported by literature: according to Riaz
t al. (2009), the most notable maintainability models are using
etrics from these quality properties to quantify software main-

ainability (van Koten and Gray, 2006; Zhou and Leung, 2007).
part from these dominant properties, other secondary ones have
een studied: encapsulation (e.g., number of private/protected
ethods/attributes); history (e.g., number of commits); business

e.g., number of stakeholders involved in maintenance); com-
ents (e.g., comment density); polymorphism (e.g., number of
olymorphic methods); and fault-tolerance/reliability (e.g., num-
er of bugs). We note that ‘‘Other’’ includes results obtained from
limited number of papers, e.g. Power and Malloy (2004) study-

ng the instability and the complexity of grammar-based software
pplications, such as compilers, editors, program comprehension
ools etc.

To proceed to a more fine-grained analysis, in Table 6, we
resent the results of cross-tabulating CIA parameters and quality
roperties. In particular, in Table 6, for each pair of CIA parameter
nd quality property, we provide two values: (a) the number of
istinct metrics in the cross-tabulation; and (b) the percentage
f studies in which at least one metric of this category has
ppeared—sorted by (b). For example, given the first row, we
an observe that 30 coupling metrics have been reported as
elevant to instability, and these metrics span in 71% of studies
hat use metrics for assessing instability. We note that both views
re useful: The first view denotes the availability of metrics (a
arge number can be perceived both positively and negatively,
n the sense that the selection might end up to be confusing),
hereas the second view denotes the importance of the property

n assessing the specific change impact parameter. The results of
able 5, can be discussed as follows:

• The relation between coupling and instability (coupling is
ranked as first both in terms of frequency and absolute

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892

a
r
s
c
d

number of metrics), is expected, in the sense that software
dependencies are the means for transferring changes from
one artifact to another (e.g., through aggregation between
two classes) (Arvanitou et al., 2015). The following proper-
ties are complexity and size. The relation between complexity
and instability can be ascertained by the fact that a highly
complex system might lead to bugs, which are the ‘‘cause’’
of ripple effects (Yau et al., 1978). Furthermore, the relation
to size can also be attributed to the indirect relation of cou-
pling (i.e., the more classes exist in the system the highest
the average coupling Harrison et al., 1998) and reasons for
change (i.e., the more lines of code a class has the more rea-
sons to change Lippert and Roock, 2006). Regarding specific
metrics (from Appendix C), we can observe that the most
used metrics for assessing instability are two complexity
(WMC and CC) and two size metrics (LOC and NOC). This
is an interesting observation, since coupling metrics are
ranked lower than the aforementioned ones. This finding
can be explained by the vast amount of distinct coupling
metrics, which probably leads to lower frequencies: 7 com-
plexity metrics are studied in 43% of the studies, whereas
29 different coupling metrics are examined in 71% of the
studies.

• Regarding amount of change, the dominant properties are
size, inheritance, cohesion and complexity. Since the causal
link between the size of an artifact and the amount of
change is straightforward (i.e., the larger the size of the
artifact the more room there is for artifact modifications),
we focus more on the rest three quality properties. First, the
extensive use of inheritance often results in larger changes,
due to the overlap, overriding, and reuse of source code
structures (such as methods, attributes, etc.) (Shaheen and
Bousquet, 2009). Second, the relation to cohesion can be
explained by the fact that artifacts that are related to more
than one functionality (i.e., having lower cohesion), are more
prone to change collectively (or at least in larger parts) by
a single maintenance ticket, that relied upon multiple axes
of change (Martin, 2003). Finally, more complex artifacts
(e.g., methods with many control statements) are expected
to change in more parts of their implementation. For in-
stance, a method that includes 4 if-else if statements are ex-
pected to change collectively in all 4 parts of the condition,
if a change on the guard variable is being made. Regarding
specific metrics, it is interesting to highlight the very high
dispersion of metrics, since only one metric (LCOM) is found
in two studies: all the rest are used only ones.

• Regarding change proneness, we have observed that the
most frequently used property is coupling. This assertion can
be considered reasonable, because coupling is the prevalent
quality property for capturing instability: instability can be
viewed as a consequence of change proneness (Arvanitou
et al., 2017b). Second ranks the property size, which can
be considered intuitive, in the sense that larger artifacts
(e.g., classes) are by nature more probable to change in a
next version of the system, since they are probably related to
more requirements and are probably receiving more ripple
effects from other classes (Lu et al., 2012). Similarly to be-
fore, in the top-5 metrics for assessing change proneness, we
have not identified any metric related to coupling (LoC, CC,
DIT, LCOM, and NOC): highlighting again the high number
of distinct coupling metric that hinders them from being
well-established in the literature.

• Finally, with respect to changeability, we have identified
coupling, inheritance, and complexity as the most prevalent
quality properties. On the one hand, coupling is inversely
related to changeability, since artifact with high coupling are
 o

10
Table 6
List of most frequently properties for each CIA parameter.
CIA parameters Quality property Number of metrics Pct. of studies

Instability

Coupling 29 71%
Complexity 7 43%
Size 10 38%
Inheritance 2 28%
Cohesion 4 21%
Fault-Reliability 4 7%
Business 2 7%
Encapsulation 1 7%
History 1 7%
Testability 1 7%

Change proneness

Coupling 72 86%
Size 38 71%
Cohesion 14 43%
Inheritance 12 43%
Complexity 9 43%
Encapsulation 5 28%
Polymorphism 7 14%
History 7 14%
Comments 3 14%
Other 2 14%
Business 2 7%

Amount of change

Size 21 60%
Inheritance 15 60%
Cohesion 7 60%
Complexity 3 60%
Coupling 14 40%
Other 2 40%
Encapsulation 4 20%

Changeability

Coupling 5 66%
Inheritance 2 33%
Size 4 33%
Complexity 9 33%
Business 1 33%
History 1 33%

more rigid and less flexible into changes. On the other hand,
the use of inheritance is positively linked to changeability,
in the sense that inheritance enables the application of
various good practices for extendibility, e.g., design patterns
(Gamma et al., 1995), Open-Closed Principle (Martin, 2003),
etc. Finally, the existence of complex methods (usually long
methods with various selection statements) is an indicator
of a difficult to change part of the software.

Based on the above we can draw the following conclusions:
(a) indirect metrics for CIA parameters assessment are sub-
stantially more, compared to direct assessors; (b) the plethora
of indirect assessors seems to hinder the establishment of
common metrics for the quantification of CIA parameters,
leading to confusion among researchers; and (c) despite the
aforementioned facts, the relations of metrics and CIA param-
eters are straightforward and intuitive, suggesting that they
are all in the right direction and have merit in practice.

Exploration of CIA at Various Development Phases. Next, in
Fig. 6, we present the count of studies that investigate CIA param-
eters quantification at specific development phase. The results
suggest that the most frequently studied development phase is
implementation (62%), followed by design (22%), architecture (14%),
nd requirements (2%). Following a similar route of investigation
egarding the studied software artifacts, the results show that
ource code is the most frequently studied artifact. This out-
ome is expected, since it follows the distribution of studies to
evelopment phases.
Finally, Table 7 presents the results of cross-tabulating devel-

pment phases and change impact parameters. In particular, for

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892

e
i
b
d
e
n
i
r
d
t
o
m
o
t
n

s
i
a
a
c
w
a
c
g
t
s
b

f
p
t
1
(

T
e
e

b
a
t
t
F
o
f
c

Fig. 6. Frequency of the development phases.

ach development phase, we record the corresponding change
mpact parameter and the number of studies in which they have
een explored. Based on Table 7, instability is examined in all
evelopment phases with a very high score. This finding can be
xplained by the fact that the assessment of an uncertain phe-
omenon (i.e., which artifacts are going to be affected by a change
n another part of the system) is more wicked, and challenging for
esearch purposes. Additionally, change proneness is well studied
uring implementation and design phase. This can be attributed
o the fact that for source code and design artifacts (e.g., number
f classes) the frequency of their change can be often directly
easured from source code repositories. However, other devel-
pment phases (e.g., requirements) could not use repositories, in
he sense that the evolution of the artifacts (e.g., use cases) do
ot record from the companies or open source software.
A similar analysis, i.e., cross-tabulating CIA parameters and

oftware artifacts (see Appendix D) has revealed that source code
s the most studied software artifact in all CIA parameters. This is
n expected outcome in the sense that source code is available for
ll software projects, and the majority of the quality assessment
oncern the source code (Arvanitou et al., 2017a). Furthermore,
e have noticed that the order of appearance of the architectural
nd design artifacts it is not the same in all quality attributes. This
ould be explained based on the aforementioned rationale (re-
arding the availability of artifacts for CIA), as well as the fact that
he dividing line between architecture and detail-design is often
ubtle, and could thus, could probably be a misunderstanding
etween researchers about the boundaries of these two phases.

Based on the aforementioned results, we can claim that CIA
parameters exploration by development phase and artifact
have led to similar results, which are primarily driven by:
(a) the availability of artifacts in each development phase;
and (b) curiosity/research challenge, i.e., targeting at the CIA
parameter that is the most uncertain one, i.e., instability.

4.3. Research direction in change impact analysis (RQ3)

In this section, we present the research goals of papers that
ocus on change impact analysis. Based on the Open-Sorting
rocess (see Section 3.4), we have identified four main themes
hat were repeating for all change impact parameters (in total
6 themes). The themes concerning instability are outlined below
the rest are omitted, since they are repetitive):

• quantify instability based on other metrics: The authors
of primary studies quantify instability using quality metrics
(directly or indirectly);
11
Table 7
List of most frequently CIA parameters for each development phase.
Development phase CIA parameters Freq.

Implementation

Change proneness 20
Amount of change 17
Instability 15
Changeability 4

Architecture

Instability 9
Amount of change 3
Changeability 1
Change proneness 1

Design

Change proneness 7
Instability 5
Amount of change 3
Changeability 4

Requirements Instability 1
Changeability 1

• assess the effect of a phenomenon on instability: The au-
thors of primary studies explore the level of the impact of
one specific phenomenon (e.g., code clones) on instability;

• assess the effect of instability to other phenomena: The
authors of primary studies investigate if there is an ef-
fect of instability to another phenomenon (e.g., on fault
proneness);

• propose a novel instability metric: The authors of the pri-
mary studies propose an instability metric.

he frequency of themes’ occurrence (per change impact param-
ter) is presented in Table 8, whereas the full results (as well as
xamples of each theme) can be found in Appendix E.
In a cumulative perspective (by examining each row of Ta-

le 8), the most studied theme is the assessment of the effect of
phenomenon on CIA parameters (31%); followed by the quan-

ification of a CIA parameter based on other metrics (24%) and
he proposal of a novel CIA parameter metrics or methods (24%).
inally, the assessment of the effect of CIA parameter values on
ther phenomena is studied on 21% of the studies. Based on the
indings of Table 8 and Appendix E, the following observations
an be stated:

• Relation of CIA to other phenomena. Despite the fact that
quite some papers explore the relation between CIA param-
eters and other phenomena (and vice-versa), we believe that
there is still room for future work in these directions, since
only a limited number of pairs between CIA parameters
and software engineering phenomena have been studied
more than two times (see Appendix E). Therefore, repli-
cation studies that would increase the level of evidence
on such relations are required. By focusing on the direc-
tion of such explorations, we can observe that potential
of future research concerning the instability and amount of
change themes present a good balance, whereas for change
proneness and changeability there is a lack of many pri-
mary research studies focusing on their effect on other
phenomena.

• Assessment based on Other Metrics. Based on the aforemen-
tioned distribution of studies we can claim that a plethora of
ways to assess CIA parameters based on other metrics exist
in practice (as it is demonstrated by the information shown
in Appendix C). The over-researching on the identification
of more and more metrics correlated to one phenomenon is
a common belief among software engineering researchers
and practitioners (e.g., for coupling there are more than 30
(Briand et al., 1999)). Therefore, in general, although we
acknowledge the need for further research towards fine-

tuning of existing approaches aimed to predicting the values

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892

5

r
o
e
r
i

T
f
e
i
m
C
p
s
i
h
s
r
s
s
d
a
s

a
f
m
p
o
(
p
o
w
a
C
a
m
w
i
o

Table 8
Cross-tabulation of research goal themes and CIA parameters.

Instability Change proneness Amount of change Changeability

Quantification of a CIA parameter based on other metrics 10 14 5 3
Assess the effect of a phenomenon on CIA parameters 9 15 8 6
Assess the effect CIA parameter to other phenomena 14 3 7 0
Propose a novel CIA parameter metric or method 15 6 3 2
s
w
r
l
t
e
o
S
i
t
c
h

6

s
i
i
e

S

of some parameters, we highly encourage researchers to
focus their efforts on the improvement of the industrial
relevance of their results, rather than attempting to link
more metrics to the CIA parameters.

• Quantification by Methods vs. Metrics. On the other hand,
the proposal of novel metrics for directly quantifying the
CIA parameters lag compared to the aforementioned cor-
relation studies. Based on Appendix E, there are nine (9)
novel metrics targeting to instability calculation, whereas
for change proneness and changeability there is only one (1)
metric. Regarding the amount of change, we have not iden-
tified any method; its direct quantification is achieved only
through metrics. Therefore, we believe that future research
is required in this direction.

. Research roadmap

In this section we present the implications of our study for
esearchers. We split the discussion on research implications
n two parts: First, we present over-studied areas of CIA and
xplain possible reasons on this. Second, we present a tentative
esearch roadmap, in terms of research areas that deserve further
nvestigation.

Along our analysis, we have identified two over-studied areas.
he correlation of existing metrics and CIA parameters; especially
ocusing on instability and change proneness. This fact can be
xplained in two ways: first, it seems like a convenience choice
n the sense that there is a plethora of available source code
etrics, which can be explored in various studies as predictors of
IA parameters. Second, it seems that the over-study of change
roneness also seems as an easy target for researchers in the
ense that change proneness (change frequency) can be very eas-
ly captured by exploiting source code repositories. On the other
and, the over-study of instability seems as a novel target in the
ense that it covers an interesting research direction, this of the
ipple effects. Studying ripple effects is interesting for researchers,
ince it is a non-trivial task, which if successfully completed yields
ubstantial improvements for maintenance costs. Nevertheless,
espite the interest of this research direction, we believe that the
pproximation of the phenomenon is saturated, and the problem
hould be approached differently in future work endeavors.
On the other hand, based on our findings, some areas need

dditional exploration: (a) proposal of novel metrics and methods
or direct quantification of CIA parameters; (b) proposal of a novel
etric for change proneness and changeability quantification; (c)
rovision of empirical evidence on the effect of CIA parameters
n other phenomena, and vice-versa for replication purposes; and
d) empirical assessment of the effect of changeability and change
roneness on other phenomena. First, given the over-studying
f proxying CIA parameters and the lack of specialized metrics,
e believe that a research roadmap must suggest researchers to
void empirically exploring the relation of existing metrics to
IA parameters, but encourage them to propose novel, direct,
nd more accurate indicators. The lack of such indicators is
ore evident for changeability and change proneness. Second,
e suggest that although there is a general belief that CIA is

mportant and shall be performed, there is a lack of evidence
n which phenomena are affected by CIA, and which aspects of
12
oftware development are affected by efficient CIA. Therefore,
e encourage researchers to seek for rigorous and industrially
elevant evidence on the way that CIA is applied and how it is re-
ated to other phenomena. As an example, we believe that a study
hat monetize the benefits obtained by CIA would be very inter-
sting for practitioners and would strengthen the understanding
f managerial stakeholders on the benefits from performing CIA.
uch an understanding, would enable the increase of investment
n CIA and elevate it as a standard practice in industry; leading
o a cultural change that would enable the upfront design for
hangeability, in a focused way; improving the quality of design
otspots.

. Threats to validity

In this section we present the threats to validity of the current
tudy based on guidelines for identifying, reporting, and mitigat-
ng threats to validity, specialized for secondary research studies
n software engineering, as they are suggested by Ampatzoglou
t al. (2019).

tudy Selection Process. Study selection validity concerns the
early phases of the research, i.e., the search process and the
filtering of studies. To guarantee that our search process ad-
equately identified all relevant studies (from the studied top-
quality venues) we used a well-defined process, based on strict
guidelines (Kitchenham and Charters, 2007). To guarantee the
relevance to software engineering, the identification process con-
sisted of an automated search of thirteen well-known venues
that publish only SE studies. The search string was extensive
and constructed in a systematic way (see Section 3.2), in the
sense that we have used only the name of the change impact
parameters, so to return candidate primary studies that are re-
lated to change impact analysis. However, it could be possible
to exclude studies that have used different terminology from the
more established ones. The benefit of focusing studies that are
using standard terminology is that the use of subjective criteria
to characterize the change impact parameters has been avoided.
To mitigate the threat to miss relevant studies, a quasi-gold
standard has been used. More specifically, we have checked that
all primary studies of a broader secondary study (i.e., Arvanitou
et al., (2018)) published in three venues (namely TSE, IST, and
JSS) have been retrieved from applying our search string. Fur-
thermore, in the inclusion/exclusion phase, it could be possible
to exclude relevant articles. To mitigate this threat, we used
three authors in the selection process, discussing any potential
conflicts and a systematic voting procedure. After this process,
a four and the fifth authors have randomly screened a subset
(15%) of the studies chosen for inclusion to verify the choice,
without identifying any problems. Also, the inclusion/exclusion
criteria have been extensively discussed by the authors to ensure
their clarity and to avoid misinterpretations. Furthermore, from
our searching process we have excluded gray literature, since the
goal of the study focuses on the use of metrics and methods,
which are almost never published in gray literature. Our study
is not suffering from missing non-English papers and the papers
published in a limited number of journals and conferences, since
our search process was aiming at a large number of publication
venues all publishing papers only in English. Finally, we were able

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892

d
s
g
q
l
r
p
c
t
o
p

c
r
C

D

c
t

to access all publications because our institutions provide access
to DLs.

Data Validity. In terms of data validity, the main threat is related
to data extraction bias and the selection of specific venues. Con-
cerning the first, all relevant data were extracted and recorded
manually by the second and the third author. Due to the potential
for subjectivity in this process (e.g., regarding the mapping of
artifacts in specific development phases), two authors reviewed
and further refined the collected data, re-validating them. Af-
ter this process, the results were discussed among all authors
and they resolved any conflicts. Regarding the decision to limit
our search space to specific venues (to ensure the high quality
of the studied research corpus), we acknowledge the fact that
some data points have been missed. Nevertheless, this decision
guarantees (to some extent) the quality of primary studies, and
therefore the results of the secondary study. Additionally, there
is no publication bias in the selected studies, in the sense that
the primary studies have been retrieved by various venues. Thus,
the aforementioned studies are not affected by a closed and small
circle of researchers. Our mapping study is not affected from the
following threats: (a) small sample size, as it became possible to
recover 99 articles; (b) lack of relationships, the study did not
aim to identify relationships between data, but only to classify
and compose; and (c) the selection of variables to be extracted, as
the research questions of this study did not create disagreements
in the discussions between authors based on the variables to be
extracted. Moreover, we did not identify issues with the use of
statistical analysis, in the sense that the nature of our research
questions did not require hypothesis testing, but only basic sta-
tistical analysis (descriptive statistics). Finally, to mitigate the
researchers’ bias in data interpretation and analysis, the authors
discussed the data clustering based on the goals of the primary
studies, the change impact parameters, and the research goals
that have been used. We note that some explanations express
the viewpoints and personal opinion of the authors, based on the
understanding of the results.

Research Validity. In terms of research validity, threats are re-
lated with research method bias and repeatability. Regarding the
first one, the majority of the authors are very familiar with the
process of conducting secondary studies, as they have partici-
pated in a large number of secondary studies as co-authors and
reviewers. On the other hand, it could be argued that the fol-
lowing evaluation process ensures the reliability and replication
of this study. Therefore, all important decisions for the review
process have been thoroughly documented in this manuscript
and can be easily reproduced by other researchers. Second, the
fact that the export of data is based on the opinion of three
authors can to some extent guarantee the reduction of potential
bias. Finally, all extracted data have been made public so that
the results can be compared and validated2. Additionally, through
iscussion among the authors, we have defined three main re-
earch questions in which they accurately map to the study
oal. This is clearly illustrated by the mapping of each research
uestion to the research objectives/goals. Furthermore, in the
iterature we have been able to identify a substantial amount of
elated works that can be used for comparison to our results. In
articular, for this reason we used related studies for performing
hange impact analysis and maintainability predictors. Finally,
he selection of the research method is adequate for the goal
f this study and no deviations from the guidelines have been
erformed.
13
7. Conclusions—Implications for practitioners

In this paper we presented the outcomes of a systematic
mapping study on Change Impact Analysis targeting at three
distinct goals: (a) explore the practical benefits of change impact
analysis; (b) provide an overview of CIA parameters (instability,
change proneness, amount of change, and changeability) quan-
tification metrics and methods; and (c) characterize the research
landscape as over- or under-researched. To achieve these goals,
we explored more than 500 articles, out of which we proceeded at
data extraction on 99. Regarding the first goal, we have provided
evidence that all maintenance activities (i.e., addition of new
features, bug fixing, performance of quality improvements) can
benefit from change impact analysis. This finding confirms the
industrial relevance of CIA, since clear benefits to practitioners
are demonstrated, and the link between academia and practice
is highlighted. With respect to quantification of change impact
parameters, our results suggest that the research community has
already validated the relation between change impact parameters
and a vast amount of metrics. However, the enormous number
of metrics can to some extent cause confusion, since there is
not enough evidence for specific metrics and the practitioners
have to deal with a complicated metric selection process. On
the other hand, the direct quantification of the change impact
parameters with specialized metrics appears to lag: in the cases
of change proneness, we have identified zero papers that propose
novel metrics for its quantification. Nevertheless, the majority
of proposed metrics appear to have an intuitive relation to CIA
parameters, providing a hint for their validity. Finally, with re-
spect to research directions, we believe that most of future work
emphasis should be placed on understanding the effect of CIA on
phenomena, and vice-versa.

Concluding, we encourage practitioners to perform change
impact analysis (regardless of the type of change), so as to re-
duce the maintenance effort and the number of introduced bugs
while applying the change. To support effective CIA, practitioners
should first identify change prone artifacts and artifacts that usu-
ally attract high volumes of change amounts. For these artifacts,
the practitioners must take specific measures to improve their
changeability. Such a precautionary action is expected to reduce
maintenance costs, in the design hotspots, i.e., parts of the system
that change regularly and largely. Next, upon the application
of the change, the practitioners should assess the instability of
artifacts (due to the ripple effect)—based on class dependencies.
For the highly instable artifacts, additional testing must be per-
formed. Based on our findings, the aforementioned assessments
can be performed with sophisticated metrics or methods, which
produce accurate CIA, but also with proxies such as coupling and
size metrics. Therefore, based on the level of investment of a
company on CIA (probably a function of the maintenance costs),
the company can either use specialized tools, or rely on more
generic metric calculation tools.

CRediT authorship contribution statement

Maria Kretsou: Conceptualization, Methodology, Formal anal-
ysis, Data curation. Elvira-Maria Arvanitou: Conceptualization,
Methodology, Formal analysis, Data curation, Writing - original
draft, Writing - review & editing. Apostolos Ampatzoglou: Con-
eptualization, Methodology, Writing - original draft, Writing -
eview & editing. Ignatios Deligiannis: Review & editing. Vassilis
. Gerogiannis: Review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892

t
v
s
i
t
G
2

A

o

R

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

C

Acknowledgment

Work reported in this paper was financially supported by
he action ‘‘Strengthening Human Resources Research Potential
ia Doctorate Research" of the Operational Program ‘‘Human Re-
ources Development Program, Education and Lifelong Learn-
ng, 2014-2020’’, implemented from State Scholarship Founda-
ion (IKY) and co-financed by the European Social Fund and the
reek public (National Strategic Reference Framework (NSRF)
014–2020).

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.jss.2020.110892.

eferences

lam, K.A., Ahmad, R., Akhunzada, A., Md Nasir, M.H.N., Khan, S.U., 2015a.
Impact analysis and change propagation in service-oriented enterprises: A
systematic review. Inf. Syst. 54, 43–73.

lam, K., Ahmad, R., Akhunzada, A., Nasir, M., Khan, S., 2015b. Impact analysis
and change propagation in service-oriented enterprises: A systematic review.
Inf. Syst. 54, 43–73.

ljohani, Qureshi, 2016. Management of changes in software requirements
during development phases. Int. J. Educ. Manag. Eng. 6 (6), 12–26.

lshayeb, M., Li, W., 2005. An empirical study of system design instability metric
and design evolution in an agile software process. J. Syst. Softw. 74, 269–274.

mpatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., Chatzigeorgiou, A., 2019.
Identifying, categorizing and mitigating threats to validity in software
engineering secondary studies. Inf. Softw. Technol. 106.

mpatzoglou, A., Stamelos, I., Gkortzis, A., Deligiannis, I., 2012. A methodology
on extracting reusable software candidate components from open source
games. In: 16th International Academic MindTrek Conference (MindTrek ’12).
Association for Computing Machinery, New York, NY, USA, pp. 93–100.

risholm, E., 2006. Empirical assessment of the impact of structural properties
on the changeability of object-oriented software. Inf. Softw. Technol. 48 (11),
1046–1055.

risholm, E., Sjøberg, D.I.K., Jørgensen, M., 2001. Assessing the changeability
of two object-oriented design alternatives a controlled experiment. Empir.
Softw. Eng. 233–271.

rvanitou, E.M., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., 2015. In-
troducing a ripple effect measure: a theoretical and empirical validation.
In: 9th International Symposium on Empirical Software Engineering and
Measurement (ESEM’ 15). IEEE Computer Society, China.

rvanitou, E.M., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., 2017a. A
method for assessing class change proneness. In: 21st International Confer-
ence on Evaluation and Assessment in Software Engineering (EASE ‘17). ACM,
Sweden.

rvanitou, E.M., Ampatzoglou, A., Chatzigeorgiou, A., Galster, M., Avgeriou, P.,
2017b. A mapping study on design-time quality attributes and metrics. J.
Syst. Softw. 127 (5), 52–77, Elsevier.

alogh, G., Antal, G., Beszédes, A., Vidács, L., Gyimóthy, T., Végh, Á.Z., 2015.
Identifying wasted effort in the field via developer interaction data. In:
International Conference on Software Maintenance and Evolution (ICSME),
Bremen, pp. 391-400.

asili, V.R., Caldiera, G., Rombach, H.D., 1994. Goal Question Metric Paradigm,
Encyclopedia of Software Engineering. John Wiley & Sons, pp. 528–532.

enestad, H.C., Anda, B., Arisholm, E., 2009. Understanding software maintenance
and evolution by analyzing individual changes: a literature review. J. Softw.
Maint. Evol.: Res. Pract. 21, 349–378.

oehm, B.W., 1991. Software risk management: Principles and practices. IEEE
Softw. 1991, 32–42.

ohner, S.A., 2000. Impact analysis in the software change process: A year 2000
perspective. In: 4th International Conference on Software Maintenance (ICSM’
96). IEEE Computer Society, Monterey, USA, pp. 42–51.

riand, L., Daly, J., Wust, J., 1999. A unified framework for coupling measurement
in object-oriented systems 25 (1) 91-121.

rink, C., Heisig, P., Wackermann, F., 2016. Change impact in product lines: A
systematic mapping study. In: International Conference on Information and
Software Technologies. pp. 677–694.

rown, N., Nord, R.L., Ozkaya, I., Pais, M., 2011. Analysis and management of
architectural dependencies in iterative release planning. In: Ninth Working
IEEE/IFIP Conference on Software Architecture, Boulder, CO, pp. 103-112.

ai, K.Y., Card, David, 2008. David card an analysis of research topics in software

engineering – 2006. J. Syst. Softw. 81 (6), 1051–1058.

14
Chen, J.-C., Huang, S.-J., 2009. An empirical analysis of the impact of software
development problem factors on software maintainability. J. Syst. Softw. 82
(6), 981–992.

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object oriented design.
Trans. Softw. Eng. 20 (6), 476–493, IEEE Computer Society.

D’Amorim, F., Borba, P., 2012. Modularity analysis of use case implementations.
J. Syst. Softw. 85, 1012–1027.

Decan, A., Mens, T., Grosjean, P., 2019. An empirical comparison of dependency
network evolution in seven software packaging ecosystems. Empir. Softw.
Eng. 24, 381–416.

Farhoodi, R., Garousi, V., Pfahl, D., Sillito, J., 2013. Development of scientific soft-
ware: A systematic mapping, a bibliometrics study, and a paper repository.
Int. J. Softw. Eng. Knowl. Eng. 23 (4).

Galorath, D.D., 2008. Software total ownership costs: development is only job
one. Softw. Tech News 11 (3).

Galster, M., Weyns, D., Tofan, D., Michalik, B., Avgeriou, P., 2014. Variability in
software systems - a systematic literature review. IEEE Trans. Softw. Eng. 40
(3), 282–306.

Gamma, E., Helms, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional, Reading,
MA.

Haney, F.M., 1972. Module Connection Analysis: A Tool for Scheduling of Soft-
ware Debugging Activities, Fall Joint Computer Conference. IEEE Computer
Society, Anaheim, USA, pp. 173–179.

Harrison, R., Counsell, S.J., Nithi, R.V., 1998. An evaluation of the MOOD set of
object-oriented software metrics. Trans. Softw. Eng. 24 (6), 491–496.

Hindle, A., 2015. Green mining: a methodology of relating software change and
configuration to power consumption. Empir. Softw. Eng. 20, 374–409.

ISO/IEC 9126-1:2001, 2001. Software engineering - Product quality (Part 1:
Quality model), Geneva, Switzerland, 2001.

Ivarsson, M., Gorschek, T., 2011. A method for evaluating rigor and indus-
trial relevance of technology evaluations. Empir. Softw. Eng. 16, 365–395,
Springer.

Jaafar, F., Guéhéneuc, Y.-G., Hammel, S., Antoniol, G., 2014. Detecting asynchrony
and dephase change patterns by mining software repositories. J. Softw.: Evol.
Process. 26 (1), Wiley & Sons.

Jabangwe, R., Börstler, J., Šmite, D., Wohlin, C., 2014. Empirical evidence on the
link between object-oriented measures and external quality attributes: a
systematic literature review. Empir. Softw. Eng. 20 (3), 640–693, Springer.

Kabaili, H., Keller, R.K., Lustman, F., 2005. Assessing object-oriented software
changeability with design metrics. In: IASTED International Conference on
Software Engineering.

Karanatsiou, D., Li, Y., Arvanitou, E.M., Misirlis, N., Wong, W.E., 2019. A
bibliometric assessment of software engineering scholars and institutions
(2010–2017). J. Syst. Softw. 147, 246–261.

Khomh, F., Gueheneuc, Y., Antoniol, G., 2009. Playing roles in design patterns:
An empirical descriptive and analytic study. In: 2009 IEEE International
Conference on Software Maintenance, Edmonton, AB, pp. 83-92.

Khomh, F., Penta, M.D., Guéhéneuc, Y., et al., 2012. An exploratory study of the
impact of antipatterns on class change- and fault-proneness. Empir. Softw.
Eng. 17, 243–275.

Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S.,
2009a. Systematic literature reviews in software engineering – a systematic
literature review. Inf. Softw. Technol. 51 (1), 7–15, Elsevier.

Kitchenham, B., Brereton, P., Turner, M., Niazi, M., Linkman, S., Pretorius, R.,
Budgen, D., 2009b. The impact of limited search procedures for systematic
literature reviews a participant-observer case study. In: 3rd International
Symposium on Empirical Software Engineering and Measurement (ESEM’09).
IEEE Computer Society, USA.

Kitchenham, B., Charters, S., 2007. Guidelines for Performing Systematic Liter-
ature Reviews in Software Engineering. Technical Report EBSE 2007-001,
Keele University and Durham University.

Kosti, M.V., Georgiadis, K., Adamos, D.A., Laskaris, N., Spinellis, D., Angelis, L.,
2018. Towards an affordable brain computer interface for the assessment of
programmers’ mental workload. Int. J. Hum.-Comput. Stud. 115, 52–66.

van Koten, C., Gray, A., 2006. An application of Bayesian network for predicting
object-oriented software maintainability. Inf. Softw. Technol. 48 (1), 59–67.

Li, W., Henry, S., ‘‘Object-oriented metrics that predict maintainability", (23:2),
1993, pp. 111-122.

Li, B., Sun, X., Hareton, L., Zhang, S., 2013. A survey of code-based change impact
analysis techniques.. J. Softw.: Test. Verif. Reliab. 23 (8), 613–646, Wiley.

Lippert, M., Roock, S., 2006. Refactoring in Large Software Projects, first ed. Wiley
& Sons.

Lu, H., Zhou, Y., Xu, B., Leung, H., Chen, L., 2012. The ability of object-oriented
metrics to predict change-proneness: a meta-analysis. Empir. Softw. Eng. 17
(3), 200–242, Springer.

Malhotra, R., Bansal, A.J., 2016. Software change prediction: a literature review.

Int. J. Comput. Appl. Technol. 54 (4), 240–256, 2016.

https://doi.org/10.1016/j.jss.2020.110892
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb1
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb1
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb1
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb1
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb1
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb2
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb2
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb2
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb2
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb2
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb3
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb3
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb3
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb4
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb4
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb4
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb5
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb5
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb5
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb5
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb5
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb6
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb6
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb6
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb6
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb6
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb6
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb6
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb7
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb7
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb7
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb7
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb7
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb8
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb8
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb8
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb8
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb8
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb9
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb9
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb9
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb9
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb9
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb9
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb9
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb10
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb11
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb11
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb11
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb11
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb11
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb13
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb13
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb13
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb14
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb14
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb14
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb14
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb14
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb15
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb15
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb15
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb16
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb16
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb16
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb16
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb16
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb18
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb18
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb18
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb18
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb18
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb20
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb20
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb20
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb21
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb21
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb21
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb21
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb21
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb22
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb22
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb22
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb23
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb23
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb23
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb24
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb24
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb24
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb24
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb24
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb25
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb25
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb25
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb25
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb25
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb26
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb26
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb26
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb27
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb27
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb27
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb27
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb27
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb28
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb28
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb28
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb28
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb28
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb29
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb29
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb29
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb29
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb29
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb30
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb30
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb30
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb31
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb31
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb31
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb33
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb33
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb33
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb33
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb33
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb34
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb34
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb34
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb34
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb34
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb35
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb35
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb35
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb35
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb35
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb36
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb36
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb36
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb36
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb36
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb37
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb37
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb37
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb37
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb37
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb39
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb39
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb39
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb39
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb39
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb40
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb40
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb40
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb40
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb40
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb41
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb41
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb41
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb41
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb41
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb41
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb41
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb41
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb41
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb42
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb42
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb42
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb42
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb42
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb43
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb43
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb43
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb43
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb43
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb44
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb44
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb44
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb46
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb46
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb46
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb47
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb47
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb47
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb48
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb48
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb48
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb48
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb48
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb49
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb49
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb49

M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou et al. The Journal of Systems & Software 174 (2021) 110892

M

d

M

M

M

M

P

P

i
p
r
o
e
H
D

Malhotra, R., Chug, A., 2016. Software maintainability: Systematic literature
review and current trends. Int. J. Softw. Eng. Knowl. Eng. 26 (8), 1221–1253.

alhotra, R., Khanna, M., 2019. Software change prediction: A systematic review
and future guidelines. e-Inform. Softw. Eng. J. 13 (1), 227–259.

e Marco, T., 1986. Controlling software projects: Management, measurement,
and estimates.

artin, R.C., 2003. Agile Software Development: Principles, Patterns and
Practices. Prentice Hall.

isirli, T., A, Shihab, E., Kamei, Y., 2016. Studying high impact fix-inducing
changes. Empir. Softw. Eng. 21, 605–641.

ondal, M., Rahman, M.S., Roy, C.K., Kevin, A., 2018. Is cloned code really stable?.
Empir. Softw. Eng. 23, 693–770.

oser, R., Pedrycz, W., Succi, G., 2004. Analysis of the Reliability of a Subset
of Change Metrics for Defect Prediction, Empirical Software Engineering
Measurement, 1-4, Conference, City, State, Country.

alomba, F., Panichella, A., Zaidman, A., Oliveto, R., De Lucia, A., 2018. The scent
of a smell: An extensive comparison between textual and structural smells.
Trans. Softw. Eng. 44 (10), 977–1000.

etersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic mapping stud-
ies in software engineering. In: 12th International Conference on Evaluation
and Assessment in Software Engineering (EASE’08). British Computer Society
Swinton, Bari, Italy, pp. 68–77.

Power, J.F., Malloy, B.A., 2004. A metrics suite for grammar-based software. J.
Softw. Maint. Evol.: Res. Pract. 16 (6).

Riaz, M., Mendes, E., Tempero, E., 2009. A systematic review on software
maintainability prediction and metrics. In: 3rd International Symposium on
Empirical Software Engineering and Measurement (ESEM’09). IEEE Computer
Society, Florida, USA, pp. 367–377.

Rovegard, P., Angelis, L., Wohlin, C., 2008. An empirical study on views of
importance of change impact analysis issues. Trans. Softw. Eng. 34 (4),
516–530, IEEE Computer Society.

Saraiva, J., Barreiros, E., Almeida, A., Lima, F., Alencar, A., Lima, G., Soares, S.,
Castor, F., 2012. Aspect-oriented software maintenance metrics: A systematic
mapping study. In: 16th International Conference on Evaluation & Assessment
in Software Engineering (EASE’12). IEEE Computer Society, Ciudad Real,
Spain, pp. 253–262.

Shaheen, M.R., Bousquet, L.d., 2009. Is depth of inheritance tree a good cost
prediction for branch coverage testing?. In: First International Conference
on Advances in System Testing and Validation Lifecycle, Porto, pp. 42-47.

Spencer, D., 2009. Card Sorting: Designing Usable Categories, first ed. Rosenfeld
Media.

Stevanetic, S., Zdun, U., 2018. Supporting the analyzability of architectural
component models - empirical findings and tool support. Empir. Softw. Eng.
23, 3578–3625.

Sun, X., Leung, H., Bin, L., Bixin, L., 2014. Change impact analysis and change-
ability assessment for a change proposal: An empirical study. J. Syst. Softw.
96, 51–60.

Tizzei, P.L., Dias, M., Rubira, C.M.F., Garcia, A., Jaejoon, L., 2011. Components
meet aspects: Assessing design stability of a software product line. Inf. Softw.
Technol. 53, 121–136.

van Vliet, H., 1993. Software Engineering: Principles and Practice, third ed. Wiley,
Chichester, England.

Woo, G., Chae, H., S, Cui, F.J., Ji, J.-H., 2009. Revising cohesion measures by
considering the impact of write interactions between class members. Inf.
Softw. Technol. 51, 405–417.

Yau, S.S., Collofello, J.S., MacGregor, T.M., 1978. Ripple effect analysis of software
maintenance. In: 2nd International Computer Software and Applications
Conference (COMPSAC’ 78). IEEE Computer Society, pp. 60–65.

Zhou, Y., Leung, H., 2007. Predicting object-oriented software maintainability us-
ing multivariate adaptive regression splines. J. Syst. Softw. 80 (8), 1349–1361,
Elsevier.

Zhou, Y., Xu, B., 2008. Predicting the maintainability of open source software
using design metrics. Wuhan Univ. J. Nat. Sci. 13 (1), 14–20, Springer.

Maria Kretsou is an M.Sc. student at the Department of
Informatics in the Open Hellenic University. She holds
a B.Sc. degree in Physics from the Aristotle University
of Thessaloniki, Greece (2010). Currently she works in
public services as a civil servant. Her research interests
include software metrics, software analysis and design,
and software maintenance.
15
Dr. Elvira-Maria Arvanitou is a Post-Doctoral Re-
searcher at the Department of Applied Informatics, in
the University of Macedonia, Greece. She holds a Ph.D.
degree in Software Engineering from the University
of Groningen (Netherlands, 2018), an M.Sc. degree
in Information Systems from the Aristotle University
of Thessaloniki, Greece (2013), and a B.Sc. degree in
Information Technology from the Technological Insti-
tute of Thessaloniki, Greece (2011). Her Ph.D. thesis
has been awarded as being part of the top-3 ICT-
related in Netherlands for 2018. Her research interests

include technical debt management, software quality metrics, and software
maintainability.

Dr. Apostolos Ampatzoglou is as an Assistant Professor
in the Department of Applied Informatics in University
of Macedonia (Greece), where he carries out research in
the area of software engineering. Before joining Univer-
sity of Macedonia he was an Assistant Professor in the
University of Groningen (Netherlands). He holds a B.Sc.
on Information Systems (2003), an M.Sc. on Computer
Systems (2005) and a Ph.D. in Software Engineering
by the Aristotle University of Thessaloniki (2012). He
has published more than 100 articles in international
journals and conferences, and is/was involved in over

15 R&D ICT projects, with funding from national and international organizations.
Also, he has been nominated as the 3rd most active Early-Stage Researcher in
software engineering for the period 2010–2017. His current research interests
are focused on technical debt management, software maintainability, game
engineering, software quality management, open source software, and software
design.

Dr. Ignatios Deligiannis is Professor at Interna-
tional Hellenic University. He was member of ESERG
(Empirical Software Engineering Research Group at
Bournemouth University, UK). He received his B.Sc. in
computer science from the University of Lund, Sweden,
then worked for several years in software development
at Siemens Telecommunications industry. His main
interests are object-oriented software assessment, and
in particular design heuristics and measurement.

Dr. Vassilis C. Gerogiannis holds a Diploma in Com-
puter/Software Engineering and a Ph.D. in Software
Engineering from the University of Patras, Greece. He
is a full time Professor in the Department of Dig-
ital Systems at the University of Thessaly, Greece.
He is also Adjunct Professor, teaching Software Engi-
neering, at the Hellenic Open University. From 1992
until present, he has participated as software engineer,
project manager and research director in several R&D
projects funded by EU or national organizations. He has
authored/co-authored more than 120 papers published

n international journals/conference proceedings, which have been cited in a
lethora of citations. He acts as guest editor, member of the editorial board and
eviewer in international journals. He serves as program chair, member of the
rganization/technical committee and invited speaker in international confer-
nces. He has received the ‘‘best paper award’’ in two international conferences.
is research interests include Software Engineering, Project Management and
ecision Making.

http://refhub.elsevier.com/S0164-1212(20)30282-X/sb50
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb50
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb50
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb51
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb51
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb51
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb52
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb52
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb52
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb53
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb53
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb53
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb54
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb54
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb54
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb55
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb55
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb55
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb57
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb57
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb57
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb57
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb57
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb58
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb58
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb58
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb58
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb58
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb58
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb58
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb59
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb59
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb59
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb60
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb60
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb60
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb60
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb60
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb60
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb60
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb61
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb61
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb61
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb61
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb61
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb62
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb62
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb62
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb62
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb62
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb62
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb62
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb62
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb62
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb64
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb64
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb64
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb65
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb65
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb65
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb65
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb65
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb66
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb66
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb66
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb66
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb66
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb67
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb67
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb67
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb67
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb67
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb68
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb68
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb68
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb69
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb69
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb69
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb69
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb69
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb70
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb70
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb70
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb70
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb70
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb71
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb71
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb71
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb71
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb71
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb72
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb72
http://refhub.elsevier.com/S0164-1212(20)30282-X/sb72

	Change impact analysis: A systematic mapping study
	Introduction
	Related work
	Study design
	Objectives and research questions
	Search process
	Data collection
	Data analysis

	Results
	Practitioners' benefits from performing change impact analysis (RQ1)
	Quantification of change impact parameters (RQ2)
	Research direction in change impact analysis (RQ3)

	Research roadmap
	Threats to validity
	Conclusions—Implications for practitioners
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A. Supplementary data
	References

