
Information and Software Technology 143 (2022) 106760

Available online 29 October 2021
0950-5849/© 2021 Elsevier B.V. All rights reserved.

Refactoring embedded software: A study in healthcare domain

Paraskevi Smiari a, Stamatia Bibi a,*, Apostolos Ampatzoglou b, Elvira-Maria Arvanitou b

a Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani, Greece
b Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

A R T I C L E I N F O

Keywords:
Embedded software
OO refactorings
Maintenance
Software evaluation
Reuse
Software tools
Performance

A B S T R A C T

Context: In embedded software industry, stakeholders usually promote run-time properties (e.g., performance,
energy efficiency, etc.) as quality drivers, which in many cases leads to a compromise at the levels of design-time
qualities (e.g., maintainability, reusability, etc.). Such a compromise does not come without a cost; since
embedded systems need heavy maintenance cycles. To assure effective bug-fixing, shorten the time required for
releasing updates, a refactoring of the software codebase needs to take place regularly. Objective: This study aims
to investigate how refactorings are applied in ES industry; and propose a systematic approach that can guide
refactoring through a 3-step process for refactoring: (a) planning; (b) design; and (c) evaluation.
Method: The aforementioned goals were achieved by conducting a single case study in a company that develops
medical applications for bio-impedance devices; and follows a rather systematic refactoring process in periodic
timestamps. Three data collection approaches have been used: surveys, interviews (10 practitioners), and artifact
analysis (51 refactoring activities).
Results: The results of the study suggest that: (a) maintainability and reusability are the design-time quality
attributes that motivate the refactoring of Embedded Software (ES), with 30% of the participants considering
them as of “Very High” importance; (b) the refactorings that are most frequently performed are “Extract
Method”, “Replace Magic Number with Constant” and “Remove Parameter”. We note that the “Extract Method”
refactoring has an applicability of more than over 80%; and (c) to evaluate the refactoring process engineers use
tools producing structural metrics, internal standards, and reviews.
Conclusions: The outcomes of this study can be useful to both researchers and practitioners, in the sense that the
former can focus their efforts on aspects that are meaningful to industry, whereas the latter are provided with a
systematic refactoring process.

1. Introduction

Embedded Software (ES) is gaining ground in the software industry
as it is considered to be a critical component of embedded systems that
enables the management, control and monitoring of devices [34]. Many
companies are engaged in continuously upgrading and developing
diverse families of embedded systems through sophisticated software to
satisfy newly appearing application requirements [29]. A possible
explanation for this, is the software’s negligible replication cost and its
greater flexibility compared to hardware, which makes it easier to
change (e.g., due to the arrival of new requirements, run-time optimi
zation activities, or bug-fixing). Thus, product development managers
often allow for some software additions or changes late in the product
development cycle to correct hardware problems or add new

functionality [30]. As the software is enhanced, modified and adapted to
new requirements, the code becomes more complex presenting de
viations from its original design that lead to reduced internal quality.
Therefore, there is an urgent need for intense maintenance activities that
aim at preserving the initial quality of the ES code. Efficient mainte
nance is far from trivial; in the sense that maintenance is one of the most
effort consuming activities in the software lifecycle (maintenance con
sumes 50–75% of the total time / effort budget of a typical software
project [40]).

In the literature, one of the most established maintenance activities
for improving internal software quality is the application of software
refactorings. According to Fowler et al. [13] refactorings are defined as
transformations that improve certain quality attributes, but do not affect
the external behavior of the software [13]. In their seminal book on

* Corresponding author.
E-mail addresses: psmiari@uowm.gr (P. Smiari), sbibi@uowm.gr (S. Bibi), a.ampatzoglou@uom.edu.gr (A. Ampatzoglou), e.arvanitou@uom.edu.gr

(E.-M. Arvanitou).

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2021.106760
Received 1 April 2021; Received in revised form 19 October 2021; Accepted 23 October 2021

mailto:psmiari@uowm.gr
mailto:sbibi@uowm.gr
mailto:a.ampatzoglou@uom.edu.gr
mailto:e.arvanitou@uom.edu.gr
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2021.106760
https://doi.org/10.1016/j.infsof.2021.106760
https://doi.org/10.1016/j.infsof.2021.106760
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106760&domain=pdf

Information and Software Technology 143 (2022) 106760

2

refactorings, Fowler et al. [13] describe more than 70 object-oriented
(OO) refactoring techniques for resolving potential bad smells. The
need for refactoring is even more urgent in ES, in the sense that their
design-time quality attributes (e.g., maintainability, reusability, etc.) are
often compromised in favor of run-time ones (e.g., performance, reli
ability, etc.) [11], since embedded systems should conform to several
run-time constraints (e.g., execution time, energy consumption, limited
memory, failure rate, etc.). Therefore, the ES domain is in need for
refactoring techniques that will improve the design-time quality of the
software, after its initial development, while preserving its functionality
and run-time quality standards.

Although the applicability of OO refactorings [13] in “traditional”
software engineering (i.e., non-ES) has already been studied [[8],[22],
[28]], their relevance to the embedded software industry, has yet not
received significant attention (see Section 2). Research has shown that
object-orientation has many benefits to offer in embedded software
development [[10],[12],[18]] (e.g., producing simpler and more
modular designs to reduce development time and prototyping effort
[[2],[14],[39]]). Therefore, the ES development domain is in need of
techniques that can improve design-time quality attributes. By consid
ering the aforementioned need, along with the popularity of refactoring
as a solution to this problem, in this paper we explore the use of refactoring
in the context of ES as a mechanism for quality improvement. The envi
sioned outcome of this work is the provision of a systematic process for
applying refactorings in ES development. We note that in this paper as
“refactorings” we refer solely to the ones introduced by Fowler et al. [13];
i.e., not to code transformations aiming to improve the run-time per
formance of the system, known as “performance improvements” [3].
Nevertheless, several refactorings might affect the performance of the
system, as a side-effect, yielding for a trade-off analysis [1]. Therefore,
any trade-offs between deign- and run-time qualities considered during
refactoring design and evaluation falls within the scope of this work.

This study considers the refactoring process as an “engineering cycle”
of design science [41]. According to Wieringa [41], every engineering
problem can be treated as a 4-step process: (a) identifying the need and
specifying the problem; (b) design the proposed solution; (c) evaluate
the proposed solution; and (d) apply the solution. The first 3 steps can be
mapped to the refactoring strategy of a company, whereas the last one
on the application of refactoring per se. This study focuses on refactoring
strategy, since the application of OO refactorings is straightforward and
in many cases, even automated by IDEs. By mapping the engineering
cycle to refactorings, the following steps are defined in the proposed
refactoring strategy (Fig. 1):

• Refactoring Planning: In this step, the software engineers have un
derstood that the codebase needs refactoring and has decided to

apply the most beneficial ones. Thus, according to Haendler and
Frysak [16] the software engineer needs to: (a) select the quality
attributes that need to be improved by identifying possible problems;
and (b) the sub-systems that need refactoring.

• Refactoring Design: The software engineer selects which refactorings
need to be applied. This decision is primarily driven by two factors:
(a) the problems that the code-base suffers from; and the related
refactoring possibilities [17] and (b) the quality attributes that have
been targeted [21].

• Refactoring Evaluation: The software engineer selects the success
criteria that are used for evaluating the benefit from refactoring
application [25].

The goal of this paper is to propose a systematic refactoring strategy,
based on empirical evidence and current industrial experiences. To
achieve this goal, we have explored the state-of-practice in the
embedded software industry, through a single-case study, in a company
that already applies a rather systematic refactoring process. The rest of
the paper is organized as follows: Section 2 presents background infor
mation and related work, whereas Section 3 the study design. The results
are presented in Section 4 and discussed in Section 5. Finally, in Section
6 we present threats to validity, and we conclude the paper in Section 7.

2. Background information and related work

In this section, the classification schema of quality attributes, used in
this paper, is presented as background information (see Section 2.1). On
the other hand, empirical studies that target the application of refac
torings in the ES industry are presented in Section 2.2.

2.1. Quality attributes classification

The quality attributes that are considered for the purpose of this
study, have been retrieved from Oliveira et al. [27], who reported,
through a literature review, the main quality attributes of interest for
embedded systems. In total 17 quality attributes are examined in this
study as key motivators of ES refactoring that according to Oliveira et al.
[27] are closely related to embedded systems. These attributes can be
classified according to Keeling et al. [19] into: (a) Run-time Quality At
tributes (QAs), i.e., those that can be assessed as the system executes;
and (b) Design- time QAs, i.e., those aspects that are related to the
development of the system (not discernible at run-time). Regarding
run-time QAs it is observed that ES are often used in a safe critical
context; therefore, they must be reliable. Also, security, safety, function
ality, efficiency (i.e., efficient consumption of hardware resources, such
as processor, memory, and battery), and portability (i.e., ability of being

Fig. 1. Refactoring strategy.

P. Smiari et al.

Information and Software Technology 143 (2022) 106760

3

transferred and used in a different environment) are identified as being
important [27]. Other run-time QAs addressed are: performance, usability
(i.e., ability of being understood, learned, configured, and used), avail
ability, fault tolerance, recoverability (reparability) and interoperability.
Among design-time QAs [27], we find maintainability (i.e., the ability of
a system to preserve a successful state), testability (i.e., the ability of a
system to support verification procedures), extensibility (i.e., the ability
of a system to be extended in the future, reusability (i.e., the level at
which a system can reuse its assets) and flexibility (i.e., the level at which
a system can adapt to changes) as important for ES design.

2.2. Related work

In this section we will present studies that have investigated the
application of refactorings in an industrial context. The planning process
of refactorings has been explored by Andrade et al. [[4],[7],[20]], and
Ribeiro and Travassos [31]. Kim et al. [20] through a survey investi
gated the drivers that lead to a refactoring as well as the process and the
analysis that is followed in order to choose the appropriate refactorings
to be applied. A survey was also conducted by Choi et al. [7] to validate
their approach. The authors mainly focused their research on ways to
extract code clones for refactoring by combining clone metrics and
consider them to be motivational for developers. Ribeiro and Travassos
[31] also conducted an exploratory survey in an embedded software
company and created and evaluated guidelines for writing code to
achieve readability and understandability. To understand if the de
velopers were doing actual refactoring or rewriting of code the authors
formed research questions that focused on the meaning of code quality
and when exactly was considered refactoring necessary. The construc
tion of code guidelines was done by analyzing which attributes lead to
readability and understandability of the code, how are they measured as
well as their in between relationship. Andrade et al. [4] created guide
lines to help engineers in the automotive domain to identify which
refactorings to apply according to the existing architecture design. The
authors created a framework consisting of a set of questions guiding the
developers into making the right refactoring decisions according to their
technical and architecture needs.

The process of applying refactorings has been thoroughly explored
by Kim et al. [[20],[23],[26],[35]], and Simons et al. [36]. Kim et al.
[20] investigated through the survey how software changes from
refactorings were integrated and how was that knowledge passed to the
rest of the developers. Also, the authors examined the usage of specific
tools that enabled refactoring. Sharma et al. [35] conducted a survey as
well on Siemens’ architects and their main focus was to identify the
challenges the architects were facing while adopting refactorings. A
special emphasis in the survey was given in the level of satisfaction and
the problems faced when adopting refactoring tools concluding that the
improvement of refactoring tools is crucial. Murphy-Hill et al. [26] also
focused their research on tools that enable refactoring. Specifically, they
collected eight datasets, previously used in other studies, and analyzed
them in order to investigate common assumptions in the domain of
software refactorings. The authors mainly focused their analysis in the
configuration of refactoring tools before their usage as well as the fre
quency that they are used and the difference of refactorings performed
using tools and those being done manually. They further investigated
the different use of refactorings, based on the expertise of the developers
on the used refactoring tools, and the presence of refactorings in commit
logs. Simons et al. [36] was mostly focused on quality and they con
ducted a survey on industrial practitioners from the Association of C and
C++ Users and the British Computer Society to gather their results. They
analyze the opinion of software engineers about Search-based Software
Engineering refactorings and focused their research in the context of
refactoring and whether or not metrics constitute a decent guide to
achieve quality. The authors also investigated the reason why metrics
are considered an intermediary of software quality as well as the for
mation of the correlation between metrics and software quality. The

quality attributes that they mainly focus on are reusability, flexibility,
and understandability. Understandability was also a key motivator in
the research conducted on refactoring embedded software by Mooij
et al. [23]. Among the findings of this study is that refactoring is helpful
when it comes to model-based rejuvenation, making the whole process
more controllable. The proposed refactoring application technique
consists of defining the refactoring language, as well as, the refactoring
operations to reduce code complexity.

Finally, the evaluation process of refactorings has been explored by
several studies [[20],[24],[25],[33],[37]] by comparing quality metrics
before and after the application of a refactoring. Moser et al. [25] used
two sets of metrics one measures at a method level and the other at a
class level. For the ones measured at a method level they used McCabe’s
cyclomatic complexity and the number of Java statements. For the ones
measured at a class level they used the Chidamber and Kemerer
object-oriented metrics. To evaluate the refactoring, they observed the
changes made in specific classes that were likely to contain reuse and
compared those changes. Moser et al. [24] also used Chidamber and
Kemerer object-oriented metrics and specifically complexity, coupling,
and cohesion metrics. They compared the results before and after the
refactoring was applied in order to assess the impact of it. The results of
the study showed an increase of productivity while refactoring showed
evidence that it prevents the increase of complexity and coupling lead
ing to a more maintainable code. Furthermore, Szőke et al. [37] focused
their research on one quality attribute, maintainability. By using the
Columbus Quality Model, they measured the maintainability before and
after the application of refactorings which indicated that extensive
refactoring periods have a very positive effect to the specific quality
attribute. Kim et al. [20] briefly evaluated the refactoring by examining
version history data and focusing the refactoring impact by measuring
reduction in dependencies and defects. Schuts et al. [33] focused their
research in legacy code refactorings in an embedded software at Philips.
The authors applied model learning in both legacy and refactored code
and compared the results with a model checker. The challenge was that
the refactored code had to have the same behavior as the legacy code
and model learning made that feasible.

The scope and the goal of the aforementioned studies is summarized
in Table 1, along with their mapping to the 3 steps of the envisioned
refactoring strategy. From the Planning phase through the Evaluation
phase there has been extensive research around the area of refactoring,
as examined above. Most of the studies focus on a specific area and do
not explore the refactoring process as a whole. Andrade et al. [4], Choi
et al. [7], and Ribeiro and Travassos [31] focused their research only in
the Planning phase of the refactoring strategy by either creating code
guidelines [31] and frameworks [4] or identifying code clones [7].
Mooij et al. [23], Murphy-Hill et al. [26], Sharma et al. [35] and Simons
et al. [36] specifically focused on the Design phase by exploring tools as
refactoring enablers [[26],[35]]; or used certain quality attributes (such
as Understandability) as drivers for refactoring [[23],[36]]. The

Table 1
Comparison to related work.

Study Envision Refactoring Strategy Step Embedded Software
Planning Design Evaluation

[4] X X
[7] X
[20] X X X
[23] X X
[24] X
[25] X
[26] X
[31] X X
[33] X X
[35] X
[36] X
[37] X
Our study X X X X

P. Smiari et al.

Information and Software Technology 143 (2022) 106760

4

Evaluation phase of the refactoring strategy has gotten more attention
by Moser et al. [[24],[25]], Schuts et al. [33] and Szőke et al. [37]. In
these studies, the researchers evaluated the applied refactorings by
performing a comparison before and after the application of the refac
torings. The gap identified by the current literature on software refac
toring is that most of the studies do not approach the refactoring process
as a whole. Though Kim et al. [20] through their analysis have explored
all of the refactoring steps, their work appears to have a gap in the
Embedded Software industry, whereas Andrade et al. [4], Mooij et al.
[23], Ribeiro and Travassos [31] and Schuts et al. [33] have made
progress in that area although their focus is only on one refactoring
phase. Our work will be targeting the Embedded Software Industry as
we have observed that the research activity is quite limited. Thus, the
main points of differentiation of this study compared to the
state-of-the-art are: (a) the focus in the Embedded Software industry,
and (b) the comprehensive analysis of all refactoring steps in a single
study.

3. Case study design

In this section, we present the design of the performed case study.
The case study is designed and reported following the guidelines pro
vided by Runeson et al. [32]. Therefore, based on the linear-analytic
structure, we first elaborate on the derived research questions, then
we present the sample of the study (i.e., the selected case and units of
analysis). Finally, we discuss data collection and analysis methods
applied per research question. We remind that the high-level (HL) goal
of this study is to understand a structured refactorings processes for ES and
to propose a systematic refactoring strategy.

3.1. Objectives & research questions

The aforementioned HL goal can be refined, based on the Goal
Question Metrics formulation [5], as follows: “analyze refactoring
practices for the purpose of understanding with respect to planning,
designing, and evaluating refactorings, from the point of view of software
engineers in the context of embedded software development”. According
to the aforementioned goal we have derived three research questions
(RQ), based on the envisioned refactoring strategy (see Section 1) that
will guide the case study design and reporting of the results.

RQ1:How do practitioners plan refactoring?
Through this research questions, we first attempt to explore which

quality attributes drive the refactoring process (RQ1.1). In this context we
record the most common quality attributes (as defined in Section 2.1)
that refactorings aim to improve. Second, we explore how the stake
holders identify the spots of the system that needs refactoring (RQ1.2). RQ1.2
intends to examine the practices that are employed in order to identify
the spots that are candidates for refactorings and the process adopted for
selecting the order of refactorings to be applied.

RQ2:How do practitioners design refactoring?
Through this research question, we explore which refactorings are

most commonly applied in the ES industry (RQ2.1). For this purpose, we
consider the documented refactorings as defined by Fowler et al. [13].
Second, through RQ2.2, we explore which quality attributes are affected
most by refactorings. Based on RQ2.2 we examine the relationship be
tween the types of refactoring and the quality attributes (both design- or
run-time QAs) that they are considered to affect, as drivers for the
refactoring or as side-effects.

RQ3: Which evaluation methods are used to assess the effect of
refactorings?

This research question aims to record the different evaluation
methods that are used to assess the effect of the refactoring application,
with respect to the quality attribute that the refactoring is considered to
improve or indirectly affect. Given the fact that refactoring is by defi
nition improving design-time QAs, emphasis is placed upon the identi
fication of cases in which the refactoring negatively affects run-time

qualities.

3.2. Case selection and units of analysis

The single case of our study is the refactoring process of ImpediMed,
i.e., an Australian large-scale software enterprise that specializes in the
development of bio-impedance devices focusing mainly on medical ap
plications in the fluid status area. This study has been conducted in the
Thessaloniki branch of ImpediMed, which is mainly involved with the
development of the software and periodically applies refactorings. The
refactoring activities performed by the company can fall into two cate
gories: (a) immediate refactorings that are performed as soon as a highly
critical issue is identified; and (b) organized refactorings that are per
formed in scheduled time periods, usually before implementing a new
release of the application. The system under analysis is SOZO: a physical
medical device used for fluid and tissue analysis. SOZO includes hand
and foot plates that obtain measurements, monitoring the condition of
the patient. The device is controlled by an Android tablet/iPad
(SOZOapp), which is paired with the device via Bluetooth. The data
gathered by the device are transferred through the app and stored in the
cloud (MySOZO). The units of analysis for our work are the participants
of the study: software engineers. As participants we selected experienced
software engineers (more than 5 years in the specific company), who are
actively involved in the refactoring process. The participants served
different roles in the company: software analysis and design, mobile
application development, web application development, database en
gineering and testing.

3.3. Data collection

The data collection process is comprised of three methods (survey,
interviews, and artifact analysis) aiming to achieve method triangula
tion for all research questions. A mapping between the research ques
tions and data collection methods, as well as the duration of each data
collection activity is presented in Table 2.

Below, we discuss in detail each data collection method, and how it
was applied for the purpose of our study. All data collection instruments
are available in Appendices B and C.

• Survey: Each participant was provided with an online questionnaire1

focusing on the reasons for applying refactorings (RQ1), the fre
quency that such refactorings took place (RQ2), and their expected
impact on quality attributes (RQ1). The QAs that have been used are
described in Section 2.1.

• Semi-Structured Interviews: Next, the participants were interviewed
for discussing the aforementioned topics, this time in the form of
open-ended question. In these interviews, an additional subject was
discussed, i.e., the way the effect of refactorings is evaluated in
practice (RQ3).

Table 2
Summary of collection methods per RQ.

Collection method RQs Duration
Survey RQ1, RQ2 45′

Semi structured interviews RQ1, RQ2, RQ3 30′

Analysis of work artifacts in plenary RQ3 40′

1 https://docs.google.com/forms/d/e/1FAIpQLSf-OhIvvGQyjM15bz-vl
yWKTUknQAHXOU3OyARc7kRdd8lnFA/viewform?usp=sf_link.

P. Smiari et al.

https://docs.google.com/forms/d/e/1FAIpQLSf-OhIvvGQyjM15bz-vlyWKTUknQAHXOU3OyARc7kRdd8lnFA/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSf-OhIvvGQyjM15bz-vlyWKTUknQAHXOU3OyARc7kRdd8lnFA/viewform?usp=sf_link

Information and Software Technology 143 (2022) 106760

5

• Analysis of Work Artifacts in Plenary: On the completion of the in
terviews several records of the refactoring logs2 have been analyzed,
so as to explore concrete examples of already applied refactorings.
We discussed these refactorings in plenary with all the participants,
especially regarding the measurement of success criteria (RQ3),
which is a technical question that might have been left answered
from the previous data collection sessions. The discussions in plenary
did not bias the opinion of the participants, since it was conducted as
the final session.

3.4. Data analysis

The data obtained from the survey, the interviews and the analysis of
the work artifacts were analyzed with a combination of quantitative and
qualitative methods. The responses to the open-ended questions and to
the interviews were analyzed using Qualitative Content Analysis (QCA)
[9], which is a research method for the subjective interpretation of the
content of text data through the systematic classification process of
coding and identifying themes or patterns. We followed an inductive
approach, where theories are proposed towards the end of the research
process as a result of observations. This process involved open coding,
creating categories, and abstraction. The codes that were found along
with their classification to categories and then the abstraction on the
three refactoring steps (planning, designing and evaluating) are pre
sented in Appendix A. Initially we transcribed the audio file from the
interview and analyzed it along with the notes we kept during the
interview. We ensured that the questions and topics of conversation in
our interview covered the whole process of conducting refactorings and
consequently helping us answer RQ1, RQ2, and RQ3. This information
was valuable since through the interviews the participants could justify
their answers in the questionnaire providing greater clarity and
completeness. Finally, through the analysis of work artifacts we were
able to have a clearer view of recent refactorings, the QA they aimed,
and the way they evaluated that refactoring, and created a dataset that
helped us answer RQ3. For enabling the replication of the study all data
collected, including the results of QCA are made publicly available.3

The responses to closed-ended questions, on the other hand, were
analyzed following quantitative analysis methods, including data visu
alization and statistical analysis [42]. More specifically, descriptive
statistics, including frequencies and percentages, were used to describe
the characteristics of the sample, and the relationships between the
variables. First, we gathered all the answers from the questionnaire in a
table of 164 columns, including the role of the respondent and 10 rows
(one for each response). The columns include the frequency of the
specific refactoring type as well as the quality attribute that the re
spondents considered that it affects. Table 3 presents an overview of the
data analysis methods used. In the column “Instrument Item” we refer to
the questions posed at the participants. For example, Q1B refers to
Question 1 presented in Appendix B, Q5C refers to Question 5 presented
in Appendix C.

For all RQs we analyze the interview questions (see Table 3) by
performing QCA. Additionally, for RQ1.1 we present the type of QAs that
the refactoring process targets at, in the form of a pie chart and for each
particular QA we provide a stacked bar that shows the level of its
importance. For RQ1.2 we describe the process of identifying and
prioritizing the spots that need refactoring in the form of a flow chart. In
RQ2.1 we present the most commonly applied refactorings in the form of
stacked bars and for RQ2.2 we employ radar charts to present the applied
refactorings with respect to the QA they intend to improve. For RQ3 we

present the methods used to evaluate the refactorings applied in the
form of a Venn chart to identify methods are used in combination. Also,
we use stacked bars to present the frequency of each evaluation method.

4. Results

In this section we report our findings organized by research question.
First, we present the QAs that drive the refactoring process along with
the procedures followed to identify the spots for improvement (RQ1).
Subsequently, we discuss the most frequently applied refactorings
accompanied by the QAs they expect to improve (RQ2). Last, we focus on
the evaluation methods for assessing the success of refactorings (RQ3).
When discussing the results of each RQ we also enumerate the major
finding and point out the codes identified by the QCA analysis is capital
letters. We note that in a parenthesis we refer to the used item of the data
collection instrument, as appearing in the appendix, i.e., (Q1B) refers to
Question 1 of Appendix B.

4.1. How do practitioners plan refactoring (RQ1)?

QAs considered in the refactoring process (RQ1.1): In this section we
present the design-time quality attributes that drive the refactoring
process of ImpediMed. Overall, the engineering team considers that the
improvement of design-time QAs is very important (90% of the re
spondents rated the necessity of refactoring as “Very High” and 10% as
“High”) (Q1B). Fig. 2 presents the results regarding the type of quality
improvement that the process is usually targeting (Q2B). For each quality
attribute we can see the percentage of participants that consider this
attribute as being important or not: e.g., through the Maintainability bar
we can observe that around 30% of the respondents consider this
attribute being of “Very High” (30%) or “High” (70%) importance.

In the interview questions (Q5C, Q6C), respondents were asked to
describe a refactoring that they have recently performed and the quality
attribute the consider, while refactoring. Five codes emerged as the most
prominent ones after applying QCA to the responses.

The three of the most frequent codes are: RUNTIME ATTRIBUTES
ARE DEALED EARLY, MAINTANABILITY IS THE MOST IMPORTANT
FACTOR and REUSE. These codes seem to be related in the sense that the
former could be reinforcing the latter, since placing emphasis upon run-
time attributes may leave design-time attributes unattended and
handled in a later time through refactorings. Nevertheless, any
improvement of design-time quality attributes must not affect or
compromise run-time performance. Run-time performance should not
be affected in any case by refactoring, since it should confront to the
strict perceptions and the restrictions posed by third-parties such as the
client, the end-user and the specific business requirements / standards
related to the legislation governing Health systems along with the
operating environment of the application (Finding 1). With respect to
maintainability, as stated by the software director: “MAINTANABILITY
IS THE MOST IMPORTANT FACTOR that drives the refactoring process
is the improvement of maintainability. This task is usually the most

Table 3
Data analysis overview.

Question Used Data-points
Collection Method Instrument Item Analysis Method

RQ1.1 Questionnaire Q1B, Q2B Pie chart, Stacked Bar chart
Interviews Q5C, Q6C QCA

RQ1.2 Questionnaire Q3B QCA
Interviews q1c, q2c, q3c, q4c Flow chart

RQ2.1 Questionnaire Q4B – Q10B Stacked Bar chart
Interviews Q5C, Q6C QCA
Analysis of Work Q9C QCA

RQ2.2 Questionnaire Q3B – Q10B Radar charts
Interviews Q5C, Q6C QCA

RQ3 Interviews Q7C, Q8C Venn chart, Stacked Bar chart
Analysis of work Q9C QCA

2 The refactoring log is an artifact held in ImpediMed for keeping a history of
refactoring activities. Each record describes the applied refactoring, the tar
geted quality attribute, and the used evaluation method.

3 The data can be downloaded from the following link:https://www.dropbox.
com/sh/fzakcszlhphkhrn/AAAf570i43U-ZKaBSjYSmKVpa?dl=0.

P. Smiari et al.

https://www.dropbox.com/sh/fzakcszlhphkhrn/AAAf570i43U-ZKaBSjYSmKVpa?dl=0
https://www.dropbox.com/sh/fzakcszlhphkhrn/AAAf570i43U-ZKaBSjYSmKVpa?dl=0

Information and Software Technology 143 (2022) 106760

6

time- consuming and challenging task since every internal engineering
team has many suggestions for improvement in that scope (Finding 2).
REUSE is also very important since there are parts of code that can be
used as libraries in subsequent releases or similar products”. This finding
complies with the results of Fig. 2, Maintainability and Reusability are
considered as key motivators for applying refactorings.

The next two codes identified are: PREPARE FOR IMPLENTING THE
NEXT RELEASE and IMPROVE TESTING PROCEDURES. The first is
related with Extendibility quality attribute while the second with Test
ability. The results of QCA are also verified by the quantitative results.
Testability is given a high priority by 40% of the respondents. A tester
mentioned that “We often need to IMPROVE TESTING PROCEDURES.
Since the application is highly critical, we often need to exhaustively test every
code path in order to achieve high code coverage. In this context not all code
structures can be testable. We often need to change the structure of a class so
as to be able to test it”. Extensibility is also a key refactoring driver since
70% of the participants recognized that it is of “High” importance. It was
mentioned by a developer that “One of our refactoring goals is to change
parts of the current version of the application in order to be able to support the
upcoming requirements and PREPARE FOR IMPLENTING THE NEXT
RELEASE”.

Maintainability and Reusability are significant driving factors for
refactoring. Though any refactorings made for improving design-time
QAs should not affect Run-time QAs since these are strictly tied to
third-party restrictions, (i.e. health regulations) and therefore are most
of the times obligatory.

Process to Identify refactorings (RQ1.2): Next, we discuss the process
employed by ImpediMed for identifying the spots in the source code that
need improvement. To answer this research sub-question, we used in
formation from the survey question Q3B as well as from the interview
questions Q1C to Q4C. QCA identified three frequent codes: TIME
REQUIRED, CODE READABILITY and ORGANIZED REFACTORINGS.
The process employed by ImpediMed to plan refactoring is presented in
Fig. 3. In Fig. 3, we observe that refactorings targeting design-time QAs
(ORGANIZED REFACTORING)4 are planned by the head department
and are usually scheduled before implementing the subsequent release
of the application. Organized refactorings may last from two weeks to
two months depending: (a) on the time constraints posed on the new
release, and (b) the criticality and the volume of the issues identified
during the operational period of the current release. The process for

organized refactorings is ad-hoc, since the majority of decisions are
made by the Software Director. Initially each Team Leader, after dis
cussing with the team, provides a list of the suggested refactorings based
mostly on his experience and the metrics provided by the static analysis
tools (Finding 3). Then the Team Leaders and the Software Director
make a discussion regarding the candidate spots for refactoring (Finding
4).

The software director makes the final decision considering: (a) the
TIME REQUIRED to refactor, and (b) the potential benefits acquired
based on the goals that the company has set (Finding 5). The estimated
time to refactor is approached by the software director, based mostly on
data from previous refactorings. Regarding the benefits acquired from
each refactoring the company has set three distinct goals:

• The first goal, in order of importance, is to improve the CODE
READABILITY of the source code since the company is in the process
of hiring new employees. As it was mentioned by the software di
rector “The code should be in a state that allows for a newly hired
employee to understand, learn and adapt within a few months”.

• The second goal is to PREPARE FOR IMPLEMENTING THE NEXT
RELEASE The general opinion of the team is that “after every release
the code needs to be highly maintainable, extensible, flexible, and reus
able so that the next development cycle will not inherit any flaws from the
previously released version”.

• The last goal of refactoring is to improve the quality of the end-
product by the USE OF NEW TECHNOLOGIES: “It is important to
keep pace with advance in Software development CASE tools”.

The process of identifying Design-time QAs that need refactoring is
semi- planned, leaving most of the decisions to the Software Director.
Code readability, Use of new technologies and Code preparation for the next
release are some of the goals when targeted by refactoring.

4.2. How do practitioners design refactoring (RQ2)?

Commonly Applied Refactorings (RQ2.1): The next phase after
planning the refactorings is designing how to apply them. Software
engineers need to identify which refactorings to apply to improve the
quality attributes mentioned in RQ1. To answer this RQ we used infor
mation from survey questions Q4B to Q10B, interview questions Q5C to
Q6C, and information from the analysis of work databases (Q9C). As
mentioned by software director: “The selection of the refactorings that
need to be applied is based on the engineers’ experience, previous refactorings
and the suggestions of Lint tools. We still do not have any formal procedures

Fig. 2. Refactoring quality attribute drivers.

4 We note that the company terminology also includes the term “IMMEDIATE
REFACTORING” which refers to “performance improvements” (see Section 1)
that are handled immediately as they appear.

P. Smiari et al.

Information and Software Technology 143 (2022) 106760

7

to record data produced during the refactoring process and this is something
we need to work on” (Finding 6). According to Fig. 4 the top-rated
refactorings are presented, with respect to the type of changes per
formed as described by Fowler et al. [13]. We selected to present the
top-20 applied refactorings that represent over 80% of the refactorings
performed during the most recent planned refactoring of the company.
Among the most prominent codes identified by QCA are the EXTRACT
METHOD and the REPLACE MAGIC NUMBER WITH SYMBOLIC
CONSTANT.

The most frequently applied refactoring, by almost all team mem
bers, is the EXTRACT METHOD. A front-end developer mentioned: “We
had several views that contained the same logic, in various parts of the code,
so we extracted them into a separate module”, similarly a tester stated:
“During testing we try to simulate a process but the functionality in some
methods is very complex to be simulated. In that case we reduce this
complexity by extracting specific functionalities into separate methods.”
Additionally, a mobile developer mentioned: “I initially implemented a
process, into one method, that contained several steps. After some while I had
to return to this method and apply a small change. I realized I forgot the
rationale behind the implementation of this method, a fact that leaded to time
delays. At the subsequent refactoring I extracted the steps of this process into
separate methods in order increase the readability of the code”.

EXTRACT CLASS refactoring was also applied in the last refactoring

session. The Software Director mentioned “In the backend part of the
application a big change appeared as a necessity in order to make the code
architecture clearer. That change was to extract all the main functionality
components of the system, implemented by the controllers, into different
services (implemented as classes). After this change the services implemented
in the new classes are separated by the controllers who now just make calls to
them. “Consolidate Conditional Expression” as well as “Consolidate
Duplicate Conditional Fragments” refactorings appear to be highly
applied. These types of refactorings are appointed by the inspection tool
(Lint tool) the programming IDE provides based on the code smells
identified (Finding 7). As static analysis of the code based on Lint is one
of the main methods adopted by the company to spot code deficiencies,
these types of refactorings are often applied.

In Fig. 4 we can observe that over 50% of the participants apply the
REPLACE MAGIC NUMBER WITH SYMBOLIC CONSTANT and the
REMOVE PARAMETER refactorings. The high usage of these refactoring
types is reasonable if we consider the statement of a database developer
who specifically said “We had some fields in the database that were defined
to support hypothetical future requirements. Those requirements actually
never came, leaving us with unused fields”. Additionally, “Replace magic
number with symbolic constant refactoring is highly applied as among others
it is considered to be mandatory by the internal company rules”. On the other
hand, refactorings related to the categories DEALING WITH THE

Fig. 3. Process employed by ImpediMed to identify spots for refactorings.

Fig. 4. Frequency of refactorings.

P. Smiari et al.

Information and Software Technology 143 (2022) 106760

8

GENERALIZATION and BIG REFACTORINGS are rarely applied. Overall,
we observe that method-level, small-scale refactorings are preferred
compared to big refactorings. The low frequency of the later is justified
by the development process of the company, which emphasizes in the
design phase, when detailed class diagrams are designed. Therefore,
there is little space for high-level and large-scale refactorings. This is
also supported by the fact that refactorings are more frequently applied
at method-level, instead of class-level. This finding suggests that it is
easier for the developers to specify (in the design phase) the classes
through which they will structure the source code, instead of their
methods and functionalities. Additionally, developers seem to prefer
method-level refactorings, since usually they: (a) are small scale, (b)
easy to apply, (c) require limited time, and (d) they present a lower
chance of leading to “code breaks”, compared to big refactorings.
Method-level, small-scale refactorings are preferred compared to big
refactorings. EXTRACT METHOD and the REPLACE MAGIC NUMBER
WITH SYMBOLIC CONSTANT are the most applied refactorings. The
experience of the engineer along with the suggestions of tools (i.e., Lint
tools) drive the process of identifying the candidate spots for refactoring.

QA Affected by Refactorings (RQ2.2): In this research sub-question the
developers were asked to associate the different types of refactorings
applied to the specific quality attributes they improve (survey questions
Q3B-Q10B and interview questions Q5C, Q6C). As noted in Section 1, for
answering this research question, we include in our analysis run-time
quality attributes, since the application of refactoring may be subject

to quality trade-offs. QCA results revealed two frequent codes IMPROVE
MAINTANABILITY, IMPROVE MODULARITY. As it can be observed in
Fig. 5 the quantitative results show that the primary goal while refac
toring is to build a system that will be Maintainable as well as Efficient.

From Fig. 5 we can draw some useful conclusions:

• When focusing to refactorings that aim at MAINTANABILITY, we can
observe that the refactoring category METHOD COMPOSITION is
associated with systems that are more maintainable. More specif
ically the refactorings EXTRACT METHOD and REMOVE ASSIGN
MENTS TO PARAMETERS are highly associated with
maintainability.

• Refactorings that simplify method calls, such as CONSOLIDATE
CONDITIONAL EXPRESSION and CONSOLIDATE DUPLICATE
CONDITIONAL FRAGMENTS are highly associated with PERFOR
MANCE and efficiency.

• Furthermore, the refactorings that deal with generalization, such as
EXTRACT SUPERCLASS and PULL UP FIELD are highly associated
with reusability.

The refactorings performed related to METHOD COMPOSITION
improved Maintainability, refactorings related to simplifying method
calls improved the Performance of the system while refactorings related
to generalization improved the Reusability.

Fig. 5. Quality attributes targeted by refactorings.

P. Smiari et al.

Information and Software Technology 143 (2022) 106760

9

4.3. How do practitioners evaluate refactoring (RQ3)?

In this research question we discuss the methods employed by
ImpediMed to evaluate the impact of refactorings with respect to the
quality attributes they intend to improve. To answer RQ3 we analyzed
interview questions QC7, QC8, QC9 and used information from the work
artifacts with the most recently applied refactorings. Based on the in
terviews we observed that engineers focus the refactoring evaluation on
run-time QAs. This finding is intuitive since:

• The refactoring is by definition improving design-time QAs and
therefore this viewpoint of quality is taken for granted by the soft
ware engineers.

• The compromise of run-time QAs is non-negotiable in ES (as
mentioned in Section 1) engineers perform exhaustive evaluation of
the refactoring with respect to run-time qualities (see Finding 1).

Therefore, the answer to RQ3 is naturally build around run-time QAs.
Fig. 6 presents the evaluation methods used in the company to assess the
impact of refactorings. In total four evaluation methods are referenced
by the development team based on QCA: the use of WIKI RULES, the use
of automated TOOLS such as the LINT TOOL and the INTERNAL COM
PANY TOOL, the use of TEST CASES and the REVIEWS (Finding 8).

Additionally, Fig. 7 presents the method employed to evaluate the
impact of refactoring with respect to the quality attribute that they
affect. According to the engineers the methods that are mostly preferred
to evaluate the effect of Maintainability are: (a) 47.1% through code
Reviews, (b) 23.5% through the usage of Tools, (c) 17.6% by utilizing
Test Cases, and (d) 11.8% by taking advantage of the Wiki Rules, as
explained below:

• REVIEW is the most popular method for evaluating the refactored
code. A web developer mentioned that: “When we refactor, espe
cially when it comes to the UI, experience and thorough reviews is
the only way to evaluate our changes and to make sure that nothing
has broken”. Additionally, through reviews the software engineer
also checks the readability of the code as well as the conformance of
the new code to the styling conventions of the company.

• TOOLS is the next most popular refactoring evaluation method to
record the values of several structural metrics and to address PER
FORMANCE indicators (Finding 9). It is important for the company
to apply refactoring targeting at improving the code understand
ability but also to ensure that the overall performance of the system
has not been compromised. The company uses both Lint tools and an
internally developed company tool.

• Lint tools provide insights regarding code metrics and are considered
to be a supplementary method when evaluating the refactored code.
According to an android developer: “Lint checks are extremely useful
for assessing refactorings in the web front-end part. Linters can help
us record performance metrics related to memory consumption,
thread deadlocks and bottlenecks and therefore correct any problems
that arise during code refactoring”. Though the Lint tools cannot be
applied in any code artifact, for example there are no such tools to
accommodate the needs of database development.

• The internal tool is a validator tool for performance testing, it checks
whether the application reaches the performance indicators. PER
FORMANCE indicators such as maximum time to login, maximum
time of response etc. are set by the engineering team in cooperation
with Business department and the client (Finding 10). The Internal
tool is exclusively used by the backend team in all refactoring cases,
as it is obligatory by the company standards to validate code through
this tool.

• TEST CASES are also very frequently used to validate the refactored
code. It was stated by a database developer that “When we refactor
parts of the database transactions the evaluation is done through test
cases to make sure nothing in the functionality has changed. We

prefer to validate the correctness of the transactions performed in
test case scenarios, and check the results in the client side instead of
reviewing that the database is updated at the server side”.

• WIKI RULES are the least preferred evaluation method, but apprised
by the software director. He mentioned that “Thorough reviews
against the Wiki Rules is among the things I consult during the
evaluation of the refactorings. The Wiki rules for me guide the final
reviews of the refactored code.”

On the other hand, when the software director was asked whether
the team recorded any refactoring process metrics (i.e., actual time to
perform a refactoring, time saved when adding new functionalities due
to refactoring, overall number of changes) he mentioned: “At the
moment we do not gather data related to process metrics. These data
would actually be very useful, but it seems to me time-consuming to
keep those meta-data manually. It would be useful to have a tool that
would help us automatically record the changes performed during a
refactoring and the code affected” (Finding 11).

The preferred method for evaluating refactorings is the REVIEW of
the refactored code. TOOLS are also used when validating Run-time QAs
such as PERFORMANCE. The demand for a refactoring tool that will
potentially automate the process is highlighted.

5. Discussion

5.1. Interpretation of results

In this study we examined an existing ES industry refactoring process
in terms of the: (a) QAs that drive refactoring; (b) most frequently
applied refactoring accompanied by their impact on QAs; and (c)
methods used to evaluate them. The main outcome of the study is
illustrated in Fig. 8. From Fig. 8, we can observe that for improving
Maintainability (the key motivator for applying refactorings) the
preferred refactorings are: “Extract Method” (12%), “Add Parameter”
(7%), “Remove Parameter” (8%), “Remove Method” (12%), “Consolidate
Conditional Expressions” (2%), and “Replaced Magic Number” (8%). Those
refactorings indicate the existence of specific code smells such as
“Feature Envy”, “Long Method”, “Duplicate Code”, “Alternative Classes with
Different Interfaces”, “Speculative Generality”, as well as the code smell
“Magic Number”. Additionally, to validate the improvement of Main
tainability the methods that can be used are: Code Reviews (47.1%),
Tools (23.5%), Test Cases (17.6%) and Wiki rules (11.8%).

The results of our study have highlighted maintainability and reus
ability as the main the motivators for refactoring ES. The finding with
respect to maintainability is in accordance with Kim et al. [20] and
Ribeiro and Travassos [31], who also recognize maintainability as an
important quality attribute that drives the refactoring process. Despite
the fact that the implementation of ES presents several variations
compared to the implementation of “traditional” software [11], it seems
that in the perception of software engineers’ maintainability remains an
important quality attribute that needs to be monitored and preserved in
certain levels through refactoring. Reusability was the next most
important QA that drives the refactoring process in ES. This finding is
contradictory to Lacerda et al. [15] and Kim et al. [20], who argued that
reusability has a weaker relationship to the refactoring process
compared to the other quality attributes. Though when focusing on ES,
software reuse is both a challenge and a goal: a challenge due to the
shortcomings of layered software [38], and a necessity due to the fact
that software needs to be reused in the various product families of ES
[29]. However, we need to note that the study of Kim et al. [20] con
siders reuse rather reusability, in the scope that the refactoring is
motivated by repurposing existing code to be tailored so as to be
executed in a different environment. In this study we consider reus
ability, as the ease with which existing code can be reapplied in a
different occasion. With respect to the process of identifying spots for
refactoring, we have assessed the refactoring process employed in the

P. Smiari et al.

Information and Software Technology 143 (2022) 106760

10

company as semi-organized, since it lacks the support of formal tools and
methods to plan refactoring. Despite the fact that in research literature we
can find a variety of studies related to process models for refactoring
[[6],[16],[22]] still in practice it seems that the existing body of
knowledge about refactoring and automated tools is not exploited.

In addition to that, we discovered that most refactorings are applied in
the method-level in an attempt to improve code readability and organi
zation. The most frequently applied refactorings are related to the
renaming of methods, the organization of parameters, the replacement
of magic numbers which is are also appointed as popular refactorings in
conventional software refactoring according to Murphy-Hill et al. [26].
Our results indicated that “Extract Method”, “Rename Method” and
“Add/Delete” types of refactoring have a great appeal to engineers. This
finding is in accordance with the study of Murphy-Hill et al. [26] that
has shown that “Rename” refactoring has very high application, and with
the study of Kim et al. [20] where the “Remove Parameter” refactoring
appeared to have the highest applicability. Moreover, based on the types
of the refactorings applied we can conclude that the intention of soft
ware engineers in ES is not to perform large-scale refactoring

(re-engineering or re-architecting) but rather to remove “code smells” to
improve overall the system state and support feature additions, which is
a common finding in several other studies [[15],[17],[21]].

Finally, regarding refactoring evaluation the targeted company uses
reviews and test cases to ensure that the functionality remains stable after
refactoring. Related research promotes the use of tools as an evaluation
method, either to identify whether refactoring has inserted new bugs
[33], or to calculate source code quality metrics [20]. The use of tools in
this study is also pointed out as important for calculating source code
metrics and detecting code smells. The participants though mentioned
that they are willing to adapt more tools but do not have the “know-
how” yet. Kim et al. [20], Mooij et al. [23] as well as Murphy-Hill et al.
[26] have also highlighted the need of such refactoring tools. The
evaluation of refactoring by examining process metrics such as the
productivity of the development team [24] is not performed at all within
the examined company. Participants though recognized the impact of
refactoring in increasing the team productivity but thought that such an
evaluation would increase the overhead of the team.

Fig. 6. Evaluation methods usage.

Fig. 7. Evaluation methods per quality attributes.

P. Smiari et al.

Information and Software Technology 143 (2022) 106760

11

5.2. Implications to researchers and practitioners

This case study provides several implications to researchers and
practitioners. On the one hand, regarding researchers, our findings point
out that as their future work they can focus on refactorings related to the
reusability of the source code. Reusability in ES is considered to be very
important and still challenging, due to the fact that software is closely
related to the specificities of the hardware. Currently the refactorings
found in literature are general purpose ones, related to object-oriented
software. There is the need to define new types of refactorings that
will handle the specificities of ES, i.e., to decouple business requirements
from application requirements and remove constraints related to the
operating environment to enable for reuse. Additionally, this study
identified the need to establish new approaches and tools for supporting all
phases of the refactoring process of ES. The ES industry seeks for auto
mated tools that will be able to support in an IDE the assessment of: (a)
code, (b) performance, and (c) process metrics. In this context

researchers can work on newly addressed metrics related to ES that will
correlate the impact of code refactorings to performance and security
indicators. Additionally, there is the need for tools that support the
application of complex refactoring operations that will allow for the
traceability of refactorings, since as mentioned one change can cause
chain effects to the rest of the code.

On the other hand, practitioners are advised to follow an organized and
well-documented refactoring process that will ease the application of refac
torings, allow for the reuse of the refactored process and its continuous
improvement. For this reason, based on our findings we present a generic
process that can guide the ES industry on performing quality improve
ment. The suggested process as presented in Fig. 9, follows the design
science engineering cycle, as explained in Section 1 and is detailed based
on the findings of this study.

Plan Improvements: During the planning phase the software engi
neers need to focus on the quality attributes that need improvement and
subsequently identify the spots that present flaws.

Fig. 8. Association between QA, code smells and Fowler’s refactorings.

P. Smiari et al.

Information and Software Technology 143 (2022) 106760

12

○ The first step (step 1.1) is to decide upon the QAs that will drive the
refactoring procedure. Such a decision regarding ES involves many
stakeholders i.e., the client, the end-user, the business department
and of course the software engineering team (Findings 1, 2). It
includes the quality assessment of the application, based on the
view and goals of each stakeholder. The assessment can provide an
insight regarding the quality of experience of the end-user, the
objectives of the client, the milestones of the business department
and the difficulties that the engineering team faces. The software
director will then have an overall view of the end-product and the
quality attributes that can be improved.

○ As a second step (step 1.2) of the planning phase, the software di
rector circulates a list of the targeted QAs to each development
team. Every team discusses internally the spots that affect the
quality attributes (Finding 2). For this purpose, team members
record into a form the spots that need refactoring based: (a) on
their subjective opinion; (b) the internal rules or globally accepted
standards (i.e., Wiki rules, ISO standards, GDPR); and (c) metric
values or code smells, as derived from static analysis tools (Finding
3). The team leader collects and circulates the forms to all team
members (Finding 4). Then the team discusses the candidate spots
to be refactored and estimates the refactoring time. Regarding the
rationale that supports the estimation of the time required to apply
a refactoring the team members can follow an agile approach. At a
high level they review the spots that are candidates for refactoring
and make an intuitive estimate of the time required to apply the
refactorings. If the source code that needs to be refactored is
complicated and requires many operations then it is decomposed
into small spots whose refactoring can be better controlled and
estimated. This process requires very good knowledge of the code;
therefore, it is important to be performed at team level (Finding 2).

• At the final step of this phase (step 1.3) the lead developers of every
team and the software director discusses the findings of the previous
steps. All candidate spots for refactoring are assigned a value in a
three-scale system (LOW, MEDIUM, HIGH) based on three decision
drivers: (a) their criticality, (b) the estimated time to refactor; and (c)
the potential benefits acquired (Finding 5). Regarding the criticality
the candidate refactorings appointed by team members can be or
dered first, then come the refactorings related to internal coding
rules/standards compliance and lastly the refactorings spotted by
static analysis tools. Regarding the time required for refactoring, the
estimations performed in previous steps are used to classify candi
date refactoring spots into limited-scale refactoring spots (those
requiring less than 1 day), medium-scale refactoring spots (those
requiring 2–5 days) and large-scale refactoring spots (those requiring
more than 5 days). Regarding the benefits acquired from each
refactoring for each candidate spot the decision can be based on the
following information: the stakeholder group (s) that will benefit
from the refactoring, the objective (as recorded is step 1.1) of the
candidate refactoring with respect to the quality attribute it intends
to improve and the impact of not refactoring the particular spot. At
the end, the Software Director along with the team leads (Finding 4)
assign values to each of the three decision drivers for each candidate
refactoring spot. Then the candidate spots are ordered and the top
ones that fit into the time period assigned for the refactoring process
are selected.

Design Refactoring: During the design phase software engineers need
to focus on the refactorings that need to be applied in order to improve
the spots that present flaws.

• The first step (step 2.1) of this phase is to identify the corrective ac
tions that can be employed to improve the refactoring spots. At this

Fig. 9. Planning the refactoring process.

P. Smiari et al.

Information and Software Technology 143 (2022) 106760

13

step, the engineers may apply both refactoring related to the special
nature of embedded software [23] and common refactoring targeting
at design-time quality systems. In the first case, the engineers are
advised to follow standards and rules as imposed by the relevant
regulations that rule the domain of the application (Findings 1). For
improving design-time attributes the engineers are advised to use
common classifications of code smells / problems to refactoring so
lutions (Finding 7). This approach is widely applied in industry and
object-oriented software [21].

• This step (step 2.2) involves logging the process. It is important for
the team to keep records regarding the spots that are refactored, the
issue they presented and the solution that was applied (Finding 6).
The creation of a database containing common issues presented
within a company along with the refactoring solutions can help to
wards preventing future repetition of the issues while it stores
valuable knowledge that can be reused in future to refactor similar
issues.

Evaluate Improvements: During the evaluation phase software en
gineers need to focus on the evaluation methods that need to be applied
in order to assess the validity of the refactorings.

• The first step (step 3.1) of this phase is to evaluate the refactorings in
terms of the QAs they are targeting to improve. Software engineers
should identify a set of qualitative or quantitative methods that can
help them towards that direction (Finding 8). In this context quali
tative methods may include questionnaires or interviews with the
stakeholders to assure that the refactorings applied reached the ob
jectives set in step 1.3. Reviews (or inspections) of the code, appli
cation of static analysis tools, test cases and compliance against rules
/ standards can form a set of quantitative methods that can be used
for checking the effectiveness of the refactorings (Findings 8, 9, 10).

• At this step (step 3.2) it is important to record metrics related to: (a)
the refactored end-product (Findings 9, 10), and (b) the refactoring
process (Finding 11). Regarding (a), internal (e.g., size, complexity,
deadlocks) or external quality (number of operational bugs, response
time, number of malfunctions) metrics can be used. Regarding (b),
the refactoring process can be measured through development team
metrics (e.g., number of engineers occupied in refactoring, the level
of their experience), and change metrics (e.g., number of refactorings
applied, number of changes made for each refactoring, time required
for each refactoring) [[20],[24]].

6. Threats to validity

In this section we present threats to the validity of this case study.
These threats will be organized into construct, internal, and external
validity, as well as reliability threats. Internal validity will not be
applicable to this study, since in our research we do not examine causal
relationships. For the mitigation of construct validity, which demon
strates if the conducted case study actually encompasses all of the
research questions [32], we followed specific steps. In our data collec
tion process, we established more than one data set in order to form data
and method triangulation. With method and data triangulation we
prevented the usage of one data source that would potentially cause
misleading results. Another potential threat to construct validity would
be the number of the participants. We believe that the threat is
non-existent since we chose a diverse set of participants that included all
the different software development roles of the company. The inclusion
of the software director as a participant helped us have a broader
perspective in our data set.

With respect to external validity, which concerns the generalization
of our findings and the application of research in similar domains [32],
we understand that it may seem challenging for other embedded soft
ware companies to agree with our findings. However, since ImpediMed
is a well-established company in the embedded software and medical

devices domain and our participants consisted of diverse roles with at
least 2 years of experience we believe that the application of our method
in similar domains will convey similar results. Finally, we note that the
results of this study are not directly comparable to other studies that: (a)
have a different definition of quality attributes, or (b) are performed in a
different context.

Finally, regarding the reliability of the case study we made sure that
the findings from the data collection and analysis process can be
recreated [32]. To achieve that, we created the questionnaire online so
that it can be accessed by other researchers who want to reproduce the
results. Additionally, during our interviews we asked open ended
questions along with a motivation for each answer. The questions asked
during the interview are also provided online. The data analysis process
was conducted by two researchers in order to avoid bias. Also, we made
all data publicly available so as to enable the replication of the study.5

7. Conclusions

Software refactoring has proved to be an effective technique to
improve the overall quality of a software system. However, applying
refactoring in embedded software is a challenging task since ES needs to
comply with strict constraints during run-time operation (i.e., perfor
mance, security). Moreover, the embedded software domain is driven by
cost and time-to-market factors, which also influence the refactoring
decisions taken by software engineers in ES. This paper explores the
refactoring strategy adopted by a company developing ES in the medical
domain through a holistic industrial study. We analyzed three sources of
data (surveys, interviews and artifact analysis) in order to understand
the strategy adopted by the company in order to plan, apply and eval
uate refactoring. The results show that the refactoring strategy followed
by the company is semi-organized, mostly driven by design-time quality
attributes (100% of the respondents consider them of “High” impor
tance) such as Maintainability and Reusability (30% of the participants
considering them of “Very High” importance). The refactorings are
applied more frequently in the method-level, in an attempt to improve
code readability and organization. In particular the most frequently
performed refactorings are “Extract Method”, “Replace Magic Number
With Constant” and “Remove Parameter”, with the “Extract Method” pre
senting over 80% applicability. The evaluation of refactorings is per
formed mostly through reviews (62%), test cases and is complementary
supported with tools. Based on the findings of this study we proposed a
generalized refactoring process model for ES that can guide practitioners
during the refactoring process and inspire researchers to work on topics
related to ES, such as quality metrics associating run-time and design-
time attributes. As a future work we plan to work on a) the applica
tion of more specialized code refactorings customized to the needs of
embedded software taking into consideration the increased need for
building reusable components and b) evaluate the impact of these
refactorings on run-time quality attributes.

CRediT authorship contribution statement

Paraskevi Smiari: Conceptualization, Methodology, Formal anal
ysis, Data curation, Writing – original draft, Writing – review & editing.
Stamatia Bibi: Conceptualization, Methodology, Writing – original
draft, Writing – review & editing, Supervision. Apostolos Ampatzo
glou: Conceptualization, Methodology, Writing – original draft, Writing
– review & editing. Elvira-Maria Arvanitou: Conceptualization,
Methodology, Writing – original draft, Writing – review & editing.

5 The data can be downloaded from the following link:https://www.dropbox.
com/sh/fzakcszlhphkhrn/AAAf570i43U-ZKaBSjYSmKVpa?dl=0.

P. Smiari et al.

https://www.dropbox.com/sh/fzakcszlhphkhrn/AAAf570i43U-ZKaBSjYSmKVpa?dl=0
https://www.dropbox.com/sh/fzakcszlhphkhrn/AAAf570i43U-ZKaBSjYSmKVpa?dl=0

Information and Software Technology 143 (2022) 106760

14

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper

Acknowledgments

The authors gratefully acknowledge the assistance of ImpediMed
Ltd. for giving us insight in their refactoring processes required to make
this study possible. The valuable contribution of the volunteer practi
tioners is gratefully acknowledged. The work of Dr. Arvanitou was
financially supported by the action “Strengthening Human Resources
Research Potential via Doctorate Research” of the Operational Program
“Human Resources Development Program, Education and Lifelong
Learning, 2014–2020′′, implemented from State Scholarship Foundation
(IKY) and co-financed by the European Social Fund and the Greek public
(National Strategic Reference Framework (NSRF) 2014–2020).

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.infsof.2021.106760.

References

[1] M. Abebe, C.J. Yoo, Trends, opportunities and challenges of software refactoring: a
systematic literature review, Int. J. Softw. Eng. Appl. 8 (6) (2014) 299–318.

[2] A. Agarwal, S. Rajput, A.S. Pandya, Power management system for embedded
RTOS: an object-oriented approach, In, in: Proceedings of the Canadian Conference
on Electrical and Computer Engineering, IEEE, 2006, pp. 2305–2309.

[3] D. Arcelli, V. Cortellessa, D. Di Pompeo, R. Eramo, M. Tucci, Exploiting
architecture/runtime model-driven traceability for performance improvement, in:
Proceedings of the International Conference on Software Architecture (ICSA), IEEE,
2019, pp. 81–90.

[4] H. Andrade, I. Crnkovic, J. Bosch, Refactoring software in the automotive domain
for execution on heterogeneous platforms, in: Proceedings of the 44th Annual
Computers, Software, and Applications Conference (COMPSAC), IEEE, 2020,
pp. 1534–1541.

[5] V. Basili, G. Caldiera, D. Rombach, The goal question metric approach.
Encyclopedia of Software Engineering, John Wiley & Sons, 1994, pp. 528–532.

[6] Brown, W.J., Malveau, R.C., McCormick I.I.I., H. W., & Mowbray, T.J. (1998).
Refactoring software, architectures, and projects in crisis.

[7] E. Choi, N. Yoshida, T. Ishio, K. Inoue, T. Sano, Extracting code clones for
refactoring using combinations of clone metrics, in: Proceedings of the 5th
International Workshop on Software Clones, 2011, pp. 7–13.

[8] J. Al Dallal, Identifying refactoring opportunities in object-oriented code: a
systematic literature review, Inf. Softw. Technol. 58 (2015) 231–249.

[9] S. Elo, H. Kyngäs, The qualitative content analysis process, J. Adv. Nurs. 62 (1)
(2008) 107–115.

[10] T. Farkas, C. Neumann, A. Hinnerichs, An integrative approach for embedded
software design with UML and Simulink, in: Proceedings of the 33rd Annual IEEE
International Computer Software and Applications Conference 2, 2009,
pp. 516–521. IEEE.

[11] D. Feitosa, A. Ampatzoglou, P. Avgeriou, E. Yumi Nakagawa, Investigating quality
trade-offs in open-source critical embedded systems, in: Proceedings of the
International Conference on the Quality of Software Architectures (QoSA), 2015.
ACM.

[12] J.M. Fernandes, R.J. Machado, H.D. Santos, Modeling industrial embedded systems
with UML, in: Proceedings of the Eighth International Workshop on Hardware/
software Codesign, 2000, pp. 18–22. ACM.

[13] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the
Design of Existing Code, July, 1st ed., Addison-Wesley Professional, 1999.

[14] Z. Gu, S. Kodase, S. Wang, K.G. Shin, A model-based approach to system-level
dependency and real-time analysis of embedded software, in: Proceedings of the
IEEE Real-Time and Embedded Technology and Applications Symposium, IEEE,
2003, pp. 78–85, 2003Proceedings.

[15] G. Lacerda, F. Petrillo, M. Pimenta, Y.G. Guéhéneuc, Code smells and refactoring: a
tertiary systematic review of challenges and observations, J. Syst. Softw. 167
(2020). Volume.

[16] T. Haendler, J. Frysak, Deconstructing the refactoring process from a problem-
solving and decision-making perspective, in: Proceedings of the International
Conference on Software and Data Technologies, 2018, pp. 397–406.

[17] H. Hamza, S. Counsell, G. Loizou, T. Hall, Code smell eradication and associated
refactoring, in: Proceedings of the European Computing Conference, 2008. ECC.

[18] M. Jenko, N. Medjeral, P. Butala, Component-based software as a framework for
concurrent design of programs and platforms—An industrial kitchen appliance
embedded system, Microprocess. Microsyst. 25 (6) (2001) 287–296.

[19] M. Keeling, Design It!: From Programmer to Software Architect, , Pragmatic
Bookshelf, 2017.

[20] M. Kim, T. Zimmermann, N. Nagappan, A field study of refactoring challenges and
benefits, in: Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, 2012, pp. 1–11.

[21] G. Lacerda, F. Petrillo, M. Pimenta, Y.G. Guéhéneuc, Code smells and refactoring: a
tertiary systematic review of challenges and observations, J. Syst. Softw. 167
(2020), 110610.

[22] T. Mens, T. Tourwé, A survey of software refactoring, IEEE Trans. Softw. Eng. 30
(2) (2004) 126–139.

[23] A.J. Mooij, J. Ketema, S. Klusener, M. Schuts, Reducing code complexity through
code refactoring and model-based rejuvenation, in: Proceedings of the IEEE 27th
International Conference on Software Analysis, Evolution and Reengineering
(SANER), IEEE, 2020, pp. 617–621.

[24] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, G. Succi, A case study on the
impact of refactoring on quality and productivity in an agile team, in: Proceedings
of the IFIP Central and East European Conference on Software Engineering
Techniques, Springer, 2007, pp. 252–266. Berlin, Heidelberg.

[25] R. Moser, A. Sillitti, P. Abrahamsson, G. Succi, Does refactoring improve
reusability?, in: Proceedings of the International Conference on Software Reuse
Springer, 2006, pp. 287–297. Berlin, Heidelberg.

[26] E. Murphy-Hill, C. Parnin, A.P. Black, How we refactor, and how we know it, IEEE
Trans. Softw. Eng. 38 (1) (2011) 5–18.

[27] L.B.R. Oliveira, M. Guessi, D. Feitosa, C. Manteuffel, M. Galster, F. Oquendo, E.
Y. Nakagawa, An investigation on quality models and quality attributes for
embedded systems, ICSEA 13 (2013) 1–6.

[28] Opdyke, W.F. (1992). Refactoring object-oriented frameworks.
[29] J. Polaczek, J. Sosnowski, Exploring the software repositories of embedded

systems: an industrial experience, Inf. Softw. Technol. 131 (2021). Volume.
[30] T.G. Rauscher, P.G. Smith, Time-driven development of software in manufactured

goods, J. Prod. Innov. Manag. 12 (3) (1995) 186. International publication of the
product development & management association19.

[31] T.V. Ribeiro, G.H. Travassos, On the alignment of source code quality perspectives
through experimentation: an industrial case, in: Proceedings of the IEEE/ACM 3rd
International Workshop on Conducting Empirical Studies in Industry, IEEE, 2015,
pp. 26–33.

[32] P. Runeson, M. Host, A. Rainer, B. Regnell, Case Study Research in Software
engineering: Guidelines and Examples, John Wiley & Sons, 2012.

[33] M. Schuts, J. Hooman, F. Vaandrager, Refactoring of legacy software using model
learning and equivalence checking: an industrial experience report, in: Proceedings
of the International Conference on Integrated Formal Methods, Springer, Cham,
2016, pp. 311–325.

[34] H. Schrom, J. Schwartze, S. Diekmann, Building automation by an intelligent
embedded infrastructure: combining medical, smart energy, smart environment
and heating, in: Proceedings of the International Smart Cities Conference (ISC2),
IEEE, 2017, pp. 1–4.

[35] T. Sharma, G. Suryanarayana, G. Samarthyam, Challenges to and solutions for
refactoring adoption: an industrial perspective, IEEE Softw. 32 (6) (2015) 44–51.

[36] C. Simons, J. Singer, D.R. White, Search-based refactoring: metrics are not enough,
in: Proceedings of the International Symposium on Search Based Software
Engineering, Springer, Cham, 2015, pp. 47–61.

[37] G. Szőke, G. Antal, C. Nagy, R. Ferenc, T. Gyimóthy, Empirical study on refactoring
large-scale industrial systems and its effects on maintainability, J. Syst. Softw. 129
(2017) 107–126.

[38] J. Trudeau, Software reuse by design in embedded systems. Software Engineering
for Embedded Systems, 2013, pp. 261–280.

[39] T. Vallius, J. Haverinen, J. Röning, Object-oriented embedded system development
method for easy and fast prototyping. Mechatronics For Safety, Security and
Dependability in a New Era, Elsevier, 2007, pp. 265–270.

[40] H. Van Vliet, H. Van Vliet, J.C. Van Vliet, Software Engineering: Principles and
Practice, John Wiley & Sons, Hoboken, NJ, 2008. Vol. 13.

[41] R.J. Wieringa, Design Science Methodology For Information Systems and Software
Engineering, Springer, 2014.

[42] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer Science & Business Media,
2012.

P. Smiari et al.

https://doi.org/10.1016/j.infsof.2021.106760
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0001
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0001
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0003
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0003
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0003
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0003
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0006
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0006
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0006
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0006
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0008
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0008
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0010
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0010
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0010
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0011
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0011
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0012
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0012
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0015
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0015
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0015
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0016
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0016
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0017
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0017
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0017
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0017
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0018
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0018
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0018
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0019
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0019
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0019
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0020
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0020
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0021
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0021
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0021
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0022
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0022
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0023
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0023
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0023
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0024
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0024
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0024
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0025
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0025
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0028
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0028
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0028
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0029
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0029
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0032
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0032
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0036
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0036
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0037
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0037
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0037
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0037
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0039
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0039
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0040
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0040
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0040
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0042
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0042
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0043
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0043
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0043
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0044
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0044
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0045
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0045
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0046
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0046
http://refhub.elsevier.com/S0950-5849(21)00206-8/sbref0046

	Refactoring embedded software: A study in healthcare domain
	1 Introduction
	2 Background information and related work
	2.1 Quality attributes classification
	2.2 Related work

	3 Case study design
	3.1 Objectives & research questions
	3.2 Case selection and units of analysis
	3.3 Data collection
	3.4 Data analysis

	4 Results
	4.1 How do practitioners plan refactoring (RQ1)?
	4.2 How do practitioners design refactoring (RQ2)?
	4.3 How do practitioners evaluate refactoring (RQ3)?

	5 Discussion
	5.1 Interpretation of results
	5.2 Implications to researchers and practitioners

	6 Threats to validity
	7 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Supplementary materials
	References

