
Vol.:(0123456789)

Software Quality Journal
https://doi.org/10.1007/s11219-021-09581-y

1 3

A metric for quantifying the ripple effects
among requirements

Elvira‑Maria Arvanitou1 · Apostolos Ampatzoglou1 · Alexander Chatzigeorgiou1 ·
Paris Avgeriou2 · Nikolaos Tsiridis3

Accepted: 1 December 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
During software maintenance, it is often costlier to identify and understand the artifacts
that need to be changed, rather than to actually apply the change. In addition to identify-
ing the artifacts related to the change per se, one needs also to identify the artifacts that
are changed due to ripple effects. In this paper, we focus on ripple effects and propose
a metric for assessing the probability of one requirement to be affected by a change in
another requirement (i.e., requirements ripple effect). We focus on the requirements level,
since most maintenance tickets (which stem from the customer) are captured in natural lan-
guage and therefore are more naturally mapped to requirements, rather than source code.
The proposed metric—the requirements ripple effect measure (R2EM)—is calculated by
considering the conceptual overlap between the involved requirements (through their past
co-change), the parts of the code in which they are implemented (i.e., their overlapping
implementations), and the underlying dependencies of the source code (i.e., ripple effects
between classes). We note that despite the involvement of source code artifacts in the cal-
culation of R2EM, this metric is considered as a requirements’ level one, since the unit of
analysis is pairs of software requirements. To validate the proposed metric, we conducted
an industrial case study, on two enterprise applications of an SME. The study design
involved both quantitative and qualitative data, and input was given by 9 practitioners. The
results suggested that R2EM is able to identify ripple effects between requirements at a
satisfactory level, and those effects are mostly caused by overlapping implementations and
source code ripple effects of these implementations.

 * Apostolos Ampatzoglou
 a.ampatzoglou@uom.edu.gr

 Elvira-Maria Arvanitou
 e.arvanitou@uom.edu.gr

 Paris Avgeriou
 paris@rug.nl

 Nikolaos Tsiridis
 ntsiridis@gmail.com

1 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
2 Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
3 Research and Development Department of OTS, Thessaloniki, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-021-09581-y&domain=pdf

 Software Quality Journal

1 3

Keywords Metrics · Change impact analysis · Requirements · Maintenance

1 Introduction

During software maintenance, one of the most challenging activities is to identify the soft-
ware artifacts (e.g., requirements, design, source code) that need to be maintained (Queille
et al., 1994). This identification process typically involves two steps:

• Identifying directly affected artifacts. The maintenance ticket (e.g., a bug report, a fea-
ture request) is examined, in order to infer the affected artifacts, such as the require-
ment, the design artifact, and eventually the source code modules that need to be
updated.

• Identifying indirectly affected artifacts. Due to structural or conceptual reasons, a
change in a software artifact might emit changes to other (seemingly disconnected)
artifacts, in a form of ripple effect. Such ripple effects are typically studied through
change impact analysis (CIA) (Kretsou et al., 2021). The importance of the ripple effect
phenomenon, as a factor that increases maintenance costs, is highlighted by Galorath
(2008) and Chen and Huang (2009), who suggest that maintenance costs increase by up
to 75% if the software has a high risk of ripple effects.

In this paper, we focus on ripple effects (and the corresponding change impact analysis)
at the requirements level, so that we can identify which requirements might be affected
by a maintenance ticket pertaining to another requirement. According to Antoniol et al.
(2000), maintenance activities, which are initiated by end users, are usually specified in
natural language. Therefore, it is easier to map these maintenance tickets to requirements,
rather than other artifacts (Antoniol et al., 2000).

Our goal is to propose a metric (see Sect. 3) termed requirements ripple effect metric
(R2EM) for assessing the probability of requirements ripple effects—i.e., the probability
of one requirement to change, due to a change in another requirement. Calculating R2EM
for all pairs of requirements can be useful in practice, since it can save maintenance time:
practitioners will need less time to identify which source code artifacts will potentially
need to be updated, re-tested, and re-deployed, due to their relation to the affected require-
ments. More specifically, when a certain requirement is updated, R2EM can be consulted
to identify requirements that might need to be updated as well. Next, following traces from
requirements-to-code, a list of source code artifacts can be identified that might need to be
changed as well. This results in a more precise maintenance activity rather than intuitively
looking for potentially affected artifacts, which could be assisted by regression testing—
identifying parts of the code “that break.”

The validity of the proposed metric is evaluated in an industrial setting, involving two
medium-size systems, by considering expert opinions (i.e., quality managers and develop-
ers). In the case study, we first analyze the two systems and calculate R2EM for all pairs
of requirements. At the same time, we ask practitioners to rank the requirements that are
prone to be affected by a change in another requirement. Subsequently, we explore if the
ranking based on R2EM and the participants’ expert opinion are consistent. The organiza-
tion of the rest of the paper is as follows: In Sect. 2, we present related work, whereas in
Sect. 3 we present in detail the proposed metric. In Sect. 4, we discuss the industrial case
study design, whereas in Sect. 5, we present the results of the study. Next, in Sect. 6, we

Software Quality Journal

1 3

discuss the main findings, and in Sect. 7 the threats to validity. Finally, in Sect. 8 we con-
clude the paper.

2 Related work

In this section, we present studies related to change impact analysis at the requirements lev-
els. We note that despite the fact that the proposed approach relies on requirements-to-code
traceability, the proposed approach is not itself a traceability approach. Therefore, in this
section, we do not discuss studies related to software artifact traceability. The interested
reader can refer to secondary studies on software artifact traceability (Charalampidou et al.,
2020).

Nejati et al. (2016) presented an approach to automatically identify the impact of
requirements changes on system design using Systems Modelling Language (SysML)
models. The approach has two main steps: for a given change, the method gets a set of
estimated impacted model elements, by identifying the design elements (inter-block struc-
tural relations) that are reachable from the changed requirement, and then, they rank the
resulting set of elements according to a quantitative measure obtained using natural lan-
guage processing (NLP) techniques. Moreover, the measure is computed, by applying NLP
to the textual information of the elements. To validate the approach, the authors have per-
formed an industrial case study for evaluation purposes. The results suggest that (by using
the approach) software engineers need to inspect on average only 4.8% of the entire design
to identify the actually impacted elements. The main difference of this work compared
to our study is that this work focuses on the identification of the impact of requirements
changes to system design, whereas in our study we perform change impact analysis from
the requirements to the source code level.

Goknil et al. (2014) proposed an approach for change impact analysis in requirements
models. The approach uses formal semantics of requirements relations (e.g., requires,
refines) and requirements change types (e.g., add, update, delete). The basis of this work
was provided in a previous study, by the same group (Goknil et al., 2008). For example,
when comes a request to “delete the R1,” there are 4 cases: (a) R1 contains R2 and R3;
(b) R1 refines R2; (c) R1 requires R2; and (d) R1 conflicts R2. Additionally, the authors
extended their tool, namely, TRIC, with features for change impact analysis at require-
ments level (i.e., proposing and propagating changes, displaying inconsistent proposed
changes, implementing proposed changes in the requirements model, and predicting the
impact of proposed changes). More specifically, the tool automatically determines the
change propagation paths, checks the consistency of the changes, and suggests alterna-
tives for implementing the changes. The authors illustrated their approach and their tool
with a course management system example. The results of the study suggest that none of
the industrial requirements management tools support change impact alternatives and con-
sistency checking of changes. Additionally, Goknil et al. (2014) determined some of the
false-positive impacts that usually occur in the industrial tools, by providing change alter-
natives with impact prediction. The main differences compared to our study is that this
work focuses only at the requirements level using formal semantics, without taking into
account the change history of the requirement and other elements, such as source code or
design elements.

Conejero et al. (2012) investigated the relations between crosscutting concerns and
requirements maintainability. In particular, the authors studied the correlation between

 Software Quality Journal

1 3

crosscutting properties and requirements changeability and stability; stability is defined
as the quality attribute that refers to the extent to which a software system is resistant to
change (ISO/IEC 9126–1, 2001). As a proxy of requirements stability, the authors have
used the number of times in which a requirement has changed along the history of the
system. The authors performed an empirical study in order to identify the relation between
modularity properties (namely, tangling, scattering, and crosscutting) and maintainability
quality attributes at the requirements level using three software product lines. The results
of the study suggest that the presence of crosscutting properties negatively affects change-
ability and stability at requirements level. Although the proposed metric is able to measure
change proneness of a requirement, it is considered an after-the-fact measurement.

Arora et al. (2015) suggested an approach based on NLP for analyzing the impact
of change in natural language requirements. More specifically, the approach detects the
phrases in the requirements statements, extracts the tokens of these phrases, and computes
similarity scores for the extracted tokens. To enable phrase-level analysis of changes, they
cast these change operations as additions and deletions of phrases. Next, they calculate
for every requirements statement, a normalized matching score given a propagation condi-
tion. The matching score is computed bottom-up, from atomic to composite expressions.
The authors have implemented their approach in a prototype tool, namely, NARCIA (natu-
ral language requirements change impact analyzer). The evaluation of this approach has
been performed in two industrial case studies using 14 change scenarios. The results of this
study suggest that across the change scenarios in their case studies, the author could detect
99% (105/106) of the impacted requirements through phrasal analysis. The difference of
this study, compared to ours, is that this study focuses only on CIA in natural language
requirements specifications.

Furthermore, Rahman et al. (2014) investigated the reasons (risk factors as mentioned
in the paper) that can lead to requirements change. In order to identify the risk factors,
the authors performed both theoretical and practical approaches. Regarding theoretical, the
authors reviewed previous studies in the literature, whereas regarding empirical, they per-
formed a focus group interview with 7 practitioners from software industry. The results
of the study suggested that changes can arise due to people, processes, product internal
changes, and hardware infrastructure. The difference of this study to ours is that in our
work, we go one step further than Rahman et al., since we do not only explore the factors
that can lead to changes but also quantify them.

Hassine et al. (2005) provided a change impact analysis approach for requirements
using use case (UC) maps. Use case maps (UCMs) (Dahlstedt & Persson, 2005) have been
introduced to capture and integrate functional requirements in terms of causal scenarios
representing behavioral aspects at a higher level of abstraction, providing stakeholders
with guidance and reasoning about the system-wide functionalities and behavior. The aim
of this study is to present an approach that applies both scenario and component-based
dependency analysis techniques and the UCM forward slicing approach to identify change
impacts at the requirement level. Dependencies between UC scenarios are used to identify
the impacted scenarios. The authors performed a case study on a telephony system to illus-
trate the applicability of their approach. The main difference of this approach to ours is that
Hassine et al. (2005) focus only on requirements (ignoring relations at other levels), as well
as they assume the existence of UCMs in existing software systems.

Compared to the related work presented in this section, the current study is the first
one which (a) quantifies ripple effects among requirements and assesses the probability of
those effects to occur through a metric that relies on both source code and requirements
history; (b) receives a simple input that is usually existent in practice (i.e., Git repository

Software Quality Journal

1 3

and commit comments), without relying on sparse inputs (such as UCMs); and (c) uses
industrial experts’ opinion for validating the results.

3 Requirements ripple effect metric (R2EM)

3.1 Requirements Ripple effect metric (R2EM Definition)

In our earlier work (Ampatzoglou et al., 2015; Arvanitou et al., 2015, 2017a, b), we pro-
posed a common high-level approach for performing CIA, by calculating the probability
of an artifact to change due to ripple effects. To calculate the probability of one artifact to
change due to a ripple effect, we use the joint probability formula, since two events need
to co-occur: (a) the artifact that emits the ripple effect needs to change; and (b) the change
actually ripples to the affected artifact, since the ripple effect is a probabilistic event itself.
Next, we describe how the probability of the two aforementioned events to occur can be
calculated at the requirements level.

Probability of a requirement to change (i.e., trigger for a possible ripple effect) To
make this assessment, we exploit the version control history of the project. In particular,
we reuse the metric proposed by Conejero et al. (2012), which calculates the percentage of
commits in which a specific requirement has changed (PCRC). We calculate the metric at
commit level; i.e., we compute the percentage of commits, in which a specific requirement
has changed. To be able to calculate this metric, a detailed commit message is required
that allows tracking the requirement(s) that are being affected. We note that for this map-
ping we are not using the committed code, but we only rely on the commit message. Thus,
we assume that the process of the organization that uses the metric imposes that devel-
opers commit a message that explicitly states the affected requirements or the issue (e.g.,
when using an issue tracking system) that has initiated the commit. Commit messages have
been widely used in research as accurate descriptors of changes occurred in the software:
according to Spinellis et al. (2009) in FreeBSD, all commit messages provide a reference
to the id of the change request, whereas Buse and Weimer (2010) suggested that approxi-
mately 66% of commit messages are informative enough to understand the change in the
requirement.

Probability of the ripple effect to occur The assessment of probability to change due to
ripple effect depends on the strength of the dependency between the requirements. There-
fore, the first step for assessing this probability is to build a catalogue (although not exhaus-
tive) of the kinds of dependencies between requirements that are able to emit ripple effects.1
Along with the presentation of each kind of dependency, we also describe the metric for
assessing the probability that this dependency will generate a ripple effect P(Y|X), through
an exemplar system that is visually represented in Fig. 1. The example system concerns the
management of students and courses in a university. For simplicity, we consider that the
system is object-oriented (in a different case, classes could have been substituted with files),

1 We note that we cannot claim that this list is exhaustive. However, we have not identified any other type
of dependency from the case study. Nevertheless, other types of dependencies may exist, so we have added
a relevant threat to validity.

 Software Quality Journal

1 3

and that high-level requirements are formed based on groups of requirements that work on
the same entity. Also, we consider two main entities, namely, student and course, while the
course grade is considered as an attribute of a student for a specific course.

Conceptual dependencies between requirements According to Dahlstedt and Persson
(2005), two requirements are related in situations where one requirement is similar to or
overlapping with another in terms of how it is expressed or in terms of a similar underly-
ing idea of what the system should be able to perform. Additionally, Zhang et al. (2014)
suggest that requirements dealing with the same data are highly prone to ripple effects. In
particular, Zhang et al. (2014) validated with industrial stakeholders that if the data is to
be changed, all similar functions may be changed too. In our example, the requirements
Create Student and Edit Student are highly likely to produce a ripple effect, since they are
both related to the student entity. Therefore, if the email address of the student needs to be
validated (e.g., includes the “@” symbol and a dot) in a future version of the system, the
implementation of both requirements will need to be co-maintained, so as to ensure the
correctness of the validation. The probability of this dependency to produce a ripple effect
is assessed through the probability to change due to conceptually overlapping requirements
(PCO) metric. PCOY→X is assessed by using the percentage of past commits, in which the
two requirements (Y and X) have co-changed.

Dependencies between implementations of requirements This category emerged based on
several approaches that link requirements and implementation (Ali et al., 2013). For example,

Fig. 1 Example system for the external probability to change

Software Quality Journal

1 3

Kagdi et al. (2009) suggest that if two or more source code artifacts (e.g., files) tend to co-change
for a long time in the history of the project, they are highly probable to be conceptually related,
e.g., they belong to the same requirement. This category is decomposed into two sub-categories:

• Dependencies due to overlap in requirements implementations. The source code imple-
mentation of two or more requirements includes a set of common artifacts (e.g., classes,
files). For example, considering class–responsibility–collaboration (CRC) cards (Beck &
Cunningham, 1989; Fowler, 2003), all pairs of responsibilities that are noted in the same
CRC have an overlapping implementation in the specific class. By focusing on the exam-
ple, even though the requirements Add Grade and Assigning Professor to a Course are part
of different high-level requirements (Student and Course Management, respectively), they
are probably sharing at least one common implementation (e.g., the Course class). Thus,
when changing the Course class, the implementation of both requirements might have
to be maintained. The probability of this dependency to produce ripple effect is assessed
through the probability to change due to overlapping requirements implementations (POI)
metric. This probability (POIY→X) is assessed by the percentage of shared classes in the
implementation of Y and X requirements. To guarantee the independence of PCO and POI,
we omit from this calculation the commits that two or more requirements are co-changing.

• Dependencies due to source code ripple effects of requirements implementations.
The classes that implement a specific requirement might emit changes, due to struc-
tural dependencies to classes implementing other requirements. Based on the example
of Fig. 1, although some requirements might not have overlapping implementations,
the classes in which they are implemented, might be structurally dependent (e.g., class
Course holds an array of Student objects, so as to be aware of which students are enrolled
in it). In this case, a change in class Student can potentially emit changes to Course,
for example, if the signature of the method that fetches the list of students that have to
re-sit the course exam. Therefore, if the implementation of any of the Student Manage-
ment requirements changes, then also the implementations of the Course Management
requirements need re-maintaining. The probability of ripple effect based on this depend-
ency is assessed through the probability to change due to ripple effects at the source code
level (PRE). This probability (PREY→X) is assessed by using the union probability of all
classes implementing Y to ripple changes to classes that are involved in the implementa-
tion of X, through source code dependencies. For assessing the probability of a single
dependency to produce a source-code ripple effect, we use the ripple effect metric (REM)
(Arvanitou et al., 2017a). In particular, we examine all pairs of classes that are not con-
sidered in the PCO calculation (guaranteeing the independence of PCO and PRE), and
investigate if they are structurally dependent. The calculation of REM is as follows:

REMA→B = NDMC(A→B)+NOP(B)+NPrA(B)

NOM(B)+NA(B)
∗ PCCC(A)

NDMC: Number of distinct methods’ calls from class A to class B
NOP: Number of polymorphic methods in class B
NPrA: Number of protected attributes in class B
NOM: Number of methods in class B
NA: Number of attributes in class B
PCCC : Percentage of commits in which class a has changed2

2 We note that for REM, we refer to the frequency of past changes through PCCC, whereas for R2EM
through PCRC.

 Software Quality Journal

1 3

Upon the calculation of the aforementioned probabilities, R2EM can be calculated as
described below:

R2EM = Joint Probability {PCRC, Union Probability {PCO, POI, PRE}}.

3.2 Illustrative example

To illustrate the calculation of R2EM, we consider a system with 3 requirements (R1, R2,
and R3) that are implemented in 10 classes, throughout a version history of 10 commits (as
presented in Table 1). We illustrate the calculation of R2EM for the pair R1→R2, i.e., the
probability of R2 to change, due to changes in R1. The PCRC for R1 equals 20% (i.e., the
possible trigger for a ripple effect), since R1 changes in 2 (out of 10) commits.

Based on the above, the probability of R2 to change due to conceptual overlap with
R1 (PCOR1→R2) is 10%—1 out of 10 commits. From Table 1, we can observe that the two
requirements co-change only in commit #6 (i.e., they exist in the same row in the second
column).

To calculate the probability of R2 to change due to overlapping implementation with R1
(POIR1→R2), first each requirement should be mapped to the classes in which it is imple-
mented: ImplementationSetR1 = {C1, C2, C3} and ImplementationSetR2 = {C3, C4, C5,
C6}. Thus, POIR1→R2 is 33% since the implementation set has one common class (C3),
and the requirement R1 that emits the change is implemented in three classes.

To calculate the probability of R2 to change due to ripple effects at classes imple-
menting R1 (PRER1→R2), we first need to calculate REM (Arvanitou et al., 2017a) at
the class level. The illustrative (they cannot be deducted from the class diagram—see
Fig. 2) metrics for each class are presented in Table 2. Each row of the table represents
one class (the one that emits the change), whereas the columns represent the quality
metrics that are synthesized in the REM metric. The internal probability to change for
every class is presented in the column named PCCC (percentage of commits in which
a class has changed)—based on Table 1. Also, let us suppose that the only inheritance
relationships are between class C4 and C5 from C1. The value in the parenthesis in the
NDMC column refers to the number of distinct methods’ calls from one class to the
other.

To calculate PRER1→R2, we need to calculate PREC1→C4, PREC2→C4, PREC1→C5,
 PREC2→C5, PREC1→C6, and PREC2→C6. The pairs are created by making pairs from
 ImplementationSetR1 to ImplementationSetR2. We note that C3 is not considered in this
process, since it is common for both requirements.

PREC1→C4 =
0 + 2 + 1

4 + 4
∗ 0.2 = 7.5%PREC2→C4 =

1 + 0 + 0

5 + 2
∗ 0.1

= 1.4%PREC1→C5 =
1 + 2 + 1

4 + 4
∗ 0.2 = 10.0%

PREC2→C5 =
0 + 0 + 0

5 + 2
∗ 0.1 = 0.0% PREC1→C6 =

2 + 0 + 0

4 + 4
∗ 0.2

= 5.0%PREC2→C6 =
2 + 0 + 0

5 + 2
∗ 0.1 = 2.8%

Software Quality Journal

1 3

R2EMR1→R2 = Joint Probability {PCRC, Union Probability {PCOR1→R2, POIR1→R2,
 PRER1→R2}} =

Joint Probability {20%, Union Probability {10%, 33%, 26%}} = Joint Probability
{20%, 69%} ≈ 75%

3.3 Proposed tool chain

To automate the calculation of all the aforementioned probabilities, we have extended
a sequence of tools during our earlier work (see Fig. 3) that calculate the probabilities
for each pair of requirements of the projects. First, we use the Git repository and two
commands (clone and log) in order to (a) clone the repository and export the source
code and (b) produce the log documenting the commit history. Next, the commit his-
tory is used as an input for calculating PCCC (Arvanitou et al., 2017a). The produced
document along with the source code is provided as an input to the REM calculator
tool (Arvanitou et al., 2015). REM calculator produces a file that records the ripple

PRE
R1→R2 =Union Probability {PREC1→C4, PREC2→C4, PREC1→C5,

PREC2→C5, PREC1→C6, PREC2→C6} ≈ 26%

Table 1 Illustrative example
commit history

Commit Changed

Requirements Classes

1 R1 C1, C2, C3
2 R2 C3, C4, C6
3 R3 C6, C7
4 R2, R3 C3, C8
5 R3 C6, C8, C9
6 R1, R2 C1, C3
7 R2 C3, C5
8 R3 C6, C8, C10
9 R2, R3 C4, C5, C10
10 R3 C10

C1

C2

C6C4

C5C3

C1 C6

Powered ByVisual Paradigm Community Edition

Fig. 2 Class diagram for the illustrative example

 Software Quality Journal

1 3

effect probability at the class level. As a final step of the process and for the purposes of
this study, we also developed the R2EM calculator tool. The tool is command line and
receives as input: (a) the commit history and (b) the REM document. The tool is avail-
able online along with all the other tools that comprise the aforementioned tool-chain.3

4 Case study design

In this section, we present the design of the industrial case study that we conducted to vali-
date R2EM, within a small-medium enterprise (SME). The study is designed and reported
according to Runeson et al. (2009).

4.1 Research questions

In this section, we present the research questions of our case study. RQ1 is exploratory,
aiming at providing some insights on the phenomenon, whereas RQ2 corresponds to the

Table 2 Illustrative class metrics Class PCCC NOP NPrA NOM NA NDMC

C1 0.2 2 1 4 4 C2(2), C3(2)
C2 0.1 0 0 5 2 C4(6)
C3 0.5 0 0 3 3 C4(2)
C4 0.2 0 0 6 3 C2(1), C9(2)
C5 0.2 0 0 4 2 C1(1)
C6 0.4 0 0 2 1 C1(2), C2(2)

Fig. 3 Used tool chain for calculating R2EM

3 https:// users. uom. gr/ ~a. ampat zoglou/ aux_ mater ial/ RCPM_ Calcu lator. rar

https://users.uom.gr/~a.ampatzoglou/aux_material/RCPM_Calculator.rar

Software Quality Journal

1 3

validation of R2EM. To answer the RQs, we used a quantitative approach complemented
with quotes and explanations provided by the practitioners. We note that due to the lack of
an automated, generic-enough tool (i.e., a tool that uses as input artifacts that exist in the
industrial partner), we were not able to perform a comparative study to demonstrate the
effectiveness of R2EM. To this end, we have performed a user study that is able to identify
the agreement of R2EM to expert opinion.

RQ1: What types of dependencies are more prone to generate ripple effects?
Through this research question, we explore the three kinds of dependencies among

requirements that can lead to ripple effects (i.e., conceptually overlapping requirements,
overlapping implementations, ripple effects at the source code level), so as to explore
their occurrence in practice (i.e., their average probability to occur). The nature of RQ1 is
exploratory, since answering it can provide an insight on the ripple effects phenomenon at
the requirements level. As an outcome of this research question, we provided a ranked list
of these three types of requirements dependencies in terms of importance, and a discussion
on the statistical significance of the differences. This outcome can help to improve the pro-
posed metric: if, for example, one of the dependency types yields similar probabilities to
the other, then it can be considered redundant and removed from the calculation of R2EM.
Furthermore, the outcome can unveil which kind of dependency is more probable to gener-
ate more ripple effects, thus deserving further investigation as well as more attention from
practitioners.

RQ2: Is R2EM able to identify which requirements are affected by ripple effects?
This research question will explore the effectiveness of the proposed metric in identify-

ing ripple effects between requirements. R2EM should be able to prioritize the require-
ments to be maintained, in a similar way to the intuition of the practitioners. To investigate
this, we considered the probability of various requirements to be affected, given a change
in a selected number of other requirements.4 This probability was obtained through the
R2EM metric and the potentially affected requirements were ranked accordingly. Finally,
we contrasted the ranking provided by R2EM to the ranking provided by practitioners. The
ability of the metric to accurately predict the expert opinion of practitioners can be useful
for two reasons: (a) if there is a large number of requirements, an automatically calculated
metric, such as the proposed one, can scale much better than the one relying purely on
expert opinion; and (b) the metric can guide inexperienced developers, who are not able to
reach the level of understanding of experts in the field.

4.2 Case selection

This study is a holistic multiple case study that has been conducted in an SME in Greece.
As cases and corresponding units of analysis of the study, we consider the requirements
of the systems under investigation. As case study participants, we selected 9 software
engineers that are currently working on the maintenance and evolution of the two systems
under investigation, which are briefly described below:

• YDATA deals with customer management and billing of the national water supplier.
It consists of 651 classes (45 K lines of code) that have been developed and main-
tained with 384 commits between March 03, 2015, and March 03, 2017. The system

4 The way the requirements are selected is discussed in Sect. 4.2.

 Software Quality Journal

1 3

can be decomposed into 6 main sub-systems, each one managing the following entities:
(a) hydrometers, (b) bills, (c) users, (d) consumption statements, (e) payments, and (f)
alerts to users.

• CREGAPI deals with managing the register office of cities. It consists of 1473 classes
(100 K lines of code) that have been developed and maintained for 851 commits. The
system can be decomposed into 8 main sub-systems, each one managing the following
entities: (a) birth, (b) death, (c) marriage, (d) namegiving, (e) partnership, (f) citizen,
(g) reports, and (h) temporal triggers.

In traditional information systems (such as our two cases), a large proportion of require-
ments relies on create/read/update/delete (CRUD) operations on the entities that the
information system handles (González-Aparicio et al., 2016; Kaur & Rani, 2015; Truica
et al., 2015; Basso et al., 2016). We therefore focus on requirements related to CRUD oper-
ations. For YDATA, we investigated a sample of 24 requirements, corresponding to the 4
CRUD actions for each of the aforementioned 6 entities (hydrometers, bills). Similarly, for
CREGAPI, we considered a sample of 32 requirements for the 8 mentioned entities. The
requirements are coded using the name of the system, the first letter of the entity and the
first letter of the CRUD action. For example, the requirement that “Reads a Bill” in the
YDATA is named as: YDATA-BR (see Table 3).

Table 3 Requirements change frequency

System Requirements PCRC System Requirements PCRC

ID Name ID Name

CREGAPI CR-CR Citizen Read 6,23% YDATA YDATA-BR Bill Read 26.11%
CR-CU Citizen Update 5,99% YDATA-HR Hydrometer Read 15.67%
CR-CC Citizen Create 5,88% YDATA-LC Alert Create 13.06%
CR-MC Marriage Create 2,94% YDATA-SC Statement Create 11.23%
CR-BC Birth Create 2,12% YDATA-UU User Update 11.23%
CR-DC Death Create 2,12% YDATA-UR User Read 10.44%
CR-MU Marriage Update 1,65% YDATA-PC Payment Create 9.92%
CR-PC Political Create 1,65% YDATA-BC Bill Create 7.31%
CR-MR Marriage Read 1,29% YDATA-HC Hydrometer Read 6.01%
CR-PU Political Update 1,18% YDATA-UC User Create 6.01%
CR-NC Naming Create 0,71% YDATA-BU Bill Update 4.18%
CR-BR Birth Read 0,59% YDATA-SR Statement Read 3.39%
CR-BU Birth Update 0,59% YDATA-SU Statement Update 3.39%
CR-PD Political Delete 0,59% YDATA-HU Hydrometer Update 2.35%
CR-CD Citizen Delete 0,47% YDATA-SD Statement Delete 2.09%
CR-DU Death Update 0,35% YDATA-PR Payment Read 2.09%
CR-DR Death Read 0,24% YDATA-HD Hydrometer Delete 0.78%
CR-MD Marriage Delete 0,24% YDATA-PU Payment Update 0.52%
CR-NR Naming Read 0,24% YDATA-LR Alert Read 0.52%
CR-NU Naming Update 0,24% YDATA-CC Connection Create 0.26%
CR-PR Political Read 0,24%
CR-BD Birth Delete 0,12%

Software Quality Journal

1 3

4.3 Data collection

To answer the research questions mentioned in Sect. 4.1, we executed the tool chain
described in Sect. 3.3, and obtained change impact data of all studied requirements for both
systems. In Table 3, we present the percentage of commits, in which each requirement has
changed (PCRC). From the studied samples, we have omitted requirements that have not
changed in the commit history.

Our dataset consists of 421 rows (190: YDATA and 231: CREGAPI) that represent all
pairs of requirements in Table 3. For each pair, we have recorded the following information:

• From/To Req: The ID of the requirement that triggers/receives the ripple effect
• PCO/POI/PRE: The probability of ToReq (requirement affected by ripple effect) to

change due to changes in the FromReq (originating requirement)—a variable for each
type of requirements dependency

• R2EM: The assessed total probability of ToReq to change, due to changes occurring in
FromReq.

Additionally, since based on the study design, we needed to contrast R2EM to the expert
opinions of practitioners in OTS, we conducted a workshop with 9 industrial practitioners.
The participants have been involved in the original construction and/or maintenance of the
two projects. The workshop comprised two parts:

• Structured interviews. According to Runeson et al. (2009), structured interviews consist
of a number of open and/or closed questions and can be similar to questionnaire-based
surveys. For the needs of our study, we asked a set of closed questions (in some cases
followed by an open question for explanation purposes). The questions were of the fol-
lowing form: “Please denote how probable you believe it is to change requirements
X if you perform a change to the Y requirement, due to a ripple effect [Likert Scale:
Very Low – Very High]”. Due to the technical nature of the questions, the participants
received the questions on paper and they were asked to write down their answers after
working on the respective tasks. The first and the second authors were present during
the whole process, so the method can be compared to a supervised questionnaire-based
survey (Kitchenham & Pfleeger, 1996). The presence of authors in the room aimed at
eliminating the disadvantages of simply distributing a questionnaire, such as the ability
for participants to ask for clarifications.

• Focus group. During the focus group, the answers provided during the structured inter-
views were discussed, giving the opportunity to clarify potential differences of opin-
ion or disagreements between the participants. The focus group was conducted after
the participants had submitted their completed questionnaire, so that they would not
be biased when filling in the questionnaires. Additionally, during the focus group, we
discussed with the participants the reasoning behind their choices and the role of types
of requirements in their change impact (i.e., same entities different actions vs. same
actions on different entities).

The workshop organization and the questions used in the interviews and focus group
are presented in Appendix. Due to the limited time that participants were available, it was
not possible to validate all pairs of requirements; therefore, we had to make a selection of
pairs. To do this, we first calculated R2EM for the two projects YDATA and CREGAPI.

 Software Quality Journal

1 3

Using the calculated metrics (R2EM), we selected a set of ranked pairs of requirements per
project (ordered by the probability of the ripple effect to occur). Specifically, we selected
four requirements from each project (based on their change frequency, see Table 3)—two
frequently changing, one with medium and one with low frequency of change. Selecting
requirements from different levels of change frequency allows our results to be more rep-
resentative. We preferred to select two frequently changing requirements, since we deem
them important starting points for CIA: requirements that are rarely modified are prob-
ably not easy to remember since they are not used regularly. The selected requirements
are presented in Table 4. For each one of these requirements, we listed all other require-
ments and asked participants to evaluate how probable they believe they are to change the
latter because of maintenance request related to the former (1 = min–5 = max). In total,
76 questions were asked for YDATA (4 requirements paired with 19 others—the remain-
ing ones from Table 3) and 84 for CREGAPI (4 requirements paired with 21 others—the
remaining ones from Table 3). To assess the evaluators’ agreement, we used two-way
mixed inter-ratter reliability calculated through the intra-class correlation coefficient (ICC)
(Field, 2013). ICC is a descriptive statistic that can be used as a reliability measure, in the
sense that it describes how strongly units (in our case: evaluations from different experts)
in the same group (in our case: for the same pairs of requirements) resemble each other
(in our case: share a common opinion on the ripple effect proneness). The reliability for
the YDATA project has been calculated as 80.0% and as 77.4% for CREGAPI. The ICC
for each requirement is presented in Table 4. It can be observed that, in most of the cases,
the participants were consistent with their answers (sig. < 0.01)—the outcome for ICC is
statistically significant; the only exception is statement create, which we discuss separately
while interpreting the results.

The compiled dataset on the end of the process is summarized in Table 5. The first
column represents the 8 selected FromReqs, whereas the second column the correspond-
ing ToReqs. The third column contains the calculated R2EM score for the pairs (e.g., for
the first row the R2EM probability for a change in YDATA-BR to ripple to YDATA-HR).
Finally, the fourth column lists the prevalent perception of practitioners on the probability
of the ToReq to change due to a ripple effect, because of a change in the FromReq (e.g., for
the first row the experts’ opinion in the probability for a change in YDATA-BR to ripple to
YDATA-HR); this column is calculated as the Mode value of all participants, regarding the
corresponding pair of requirements.

Table 4 Intra-class correlation System From Requirement ICC Sig

ID Name

YDATA YDATA-BR Bill Read 87.4% 0.00
YDATA-LC Alert Create 51.1% 0.11
YDATA-SC Statement Create 57.9% 0.01
YDATA-PC Payment Create 90.9% 0.00

CREGAPI CR-CC Citizen Create 81.5% 0.00
CR-BC Birth Create 72.9% 0.00
CR-MU Marriage Update 80.3% 0.00
CR-NC Name-giving Create 72.9% 0.00

Software Quality Journal

1 3

4.4 Data analysis

To answer the two RQs posed in Sect. 4.1, we analyzed the data as follows. To answer
 RQ1 on the types of dependencies prone to generate ripple effects, we first created descrip-
tive statistics for the dataset. Specifically, we provided the list of the most change-prone
requirements, due to ripple effects from both projects. Subsequently we performed a com-
parison among the three types of requirements dependencies (i.e., conceptual overlapping,
overlapping implementations, and source code ripple effects). To this end, we presented
descriptive statistics (i.e., mean, mix, max, and standard deviation) for the probability of
the three kinds of requirements dependencies to produce ripple effects. Next, we performed
hypothesis testing to check the existence of statistically significant differences among them
(Field, 2013). To provide even more insights in which requirements tend to be affected
by ripple effects, we performed a second level analysis, considering the CRUD operations
on the main entities for each system (bills, accounts, etc. for YDATA, and births, deaths,
etc. for CREGAPI). Specifically, we considered two types of conceptual relations: relations
due to working on the same entity (same first letter in requirements ID), and relations due
to performing the same (CRUD) action on different entities (same second letter in require-
ments ID).

To answer RQ2 on the validation of the R2EM Metric, we performed a consistency
analysis by investigating the ability of the metric to accurately rank a set of components,
based on their levels of quality. Note that we consider the notion of consistency as defined
in the IEEE-1061 standard (2009). To assess consistency validity of R2EM, we calculate
the Spearman correlation between the expert assessment and R2EM scores, as presented in
Table 5 organized by FromReq. The reported correlation coefficient stands for the ability
of R2EM to accurately (based on experts’ opinion) rank the ToReq, with respect to their
probability to change due to a ripple effect, cause by the FromReq.

5 Results

In this section, we present the results of our study organized by research question. In addi-
tion to the actual results, we provide some initial interpretations of the results, whereas an
overall discussion of the results is provided in Sect. 6. First, we present some descriptive

Table 5 Dataset for validating R2EM (RQ2)

From To R2EM Experts’ opinion

YDATA-BR YDATA-HR X[1, 1] Y[1, 1]
YDATA-BR YDATA-LC X[1, 2] Y[1, 2]
…
YDATA-BR YDATA-CC X[1, 19] Y[1, 19]
…
CR-CC CR-CR X[20, 1] X[20, 1]
CR-CC CR-CU X[20, 2] X[20, 2]
…
CR-CC CR-BD X[20, 21] Y[20, 21]
…

 Software Quality Journal

1 3

statistics. In particular, in Tables 6 and 7, we present the top 10 ripple effects in each of
the examined systems. For example, regarding the YDATA system, we can observe that a
change in the way that a payment is created (YD–PC) has a probability of approximately
48% to ripple to the way that a bill is read (YD–BR); this is mostly because of their con-
ceptual (PCO) and implementation (POI) overlap. One of the practitioners confirmed this
finding: “it is obvious that whenever we receive a change in the way that a payment is cre-
ated, we will need to check the way that we read the bill statement.”

For the case of CREGAPI, we observe that the citizen entity is dominant among the
ripple effect prone requirements. The centrality of the role of citizen has been vividly
explained by one participant as follows: “all transactions are based on the citizen entity;
citizens are born, given a name, getting married, and eventually die. All the certificates
issued for these actions are related to the citizen. Thus, any change on the citizen affects the
whole of the system.”

5.1 Proneness to ripple effects for each kind of requirements dependencies (RQ1)

In this section, we present the results on the comparison of the three kinds of requirements
dependencies that can trigger ripple effects. From Table 8, we can observe that overlap-
ping implementations (POI) is the kind of dependency that is mostly responsible for the

Table 6 Intra-class correlation
for YDATA

To From R2EM PCO POI PRE

YD-BR YD-PC 47.98% 29.89% 39.06% 26.84%
YD-BR YD-HR 47.61% 14.80% 39.00% 34.25%
YD-HR YD-UR 47.61% 8.03% 41.81% 32.55%
YD-HR YD-SC 47.56% 11.29% 41.90% 30.50%
YD-HR YD-UU 47.14% 5.80% 39.45% 34.54%
YD-SC YD-HR 47.19% 0.91% 39.44% 33.83%
YD-BR YD-SC 46.60% 13.97% 38.44% 29.47%
YD-BR YD-UR 46.26% 3.57% 37.88% 33.23%
YD-UR YD-HR 46.46% 13.71% 38.07% 29.53%
YD-BR YD-BU 46.07% 5.19% 38.97% 30.09%

Table 7 Intra-class correlation
for CregAPI

To From R2EM PCO POI PRE

CR-CC CR-CU 31.78% 2.65% 19.04% 13.33%
CR-CU CR-CR 29.15% 1.36% 15.05% 15.23%
CR-CC CR-CR 25.03% 1.11% 13.91% 11.72%
CR-CU CR-CD 22.16% 0.00% 11.17% 12.38%
CR-CC CR-CD 21.25% 0.00% 12.39% 10.11%
CR-CR CR-CD 17.37% 0.00% 9.33% 8.87%
CR-CC CR-MC 14.87% 0.00% 10.09% 5.30%
CR-CC CR-DC 14.72% 0.65% 10.42% 4.18%
CR-MC CR-PC 14.64% 2.31% 9.00% 3.98%
CR-CC CR-BC 12.89% 0.00% 8.28% 5.02%

Software Quality Journal

1 3

emission of ripple effects (denoted with grey cell shading), followed by code ripple effects
(PRE) and then conceptual overlapping (PCO). An interesting observation that can be
made by comparing the results between the two projects (Table 8) is that this ranking is
consistent in both projects. Additionally, the YDATA system presents on average a higher
ripple effect proneness, compared to CREGAPI. This is probably due to the smaller size of
the system, but with a similar number of requirements.

To investigate if the aforementioned mean values are representing significant dif-
ferences, we analyzed the variance of the variables through ANOVA. For both systems,
ANOVA indicated that the three kinds of requirements dependencies lead to different prob-
abilities of ripple effect scores. To bilaterally compare the kind of dependencies, we have
performed a Wilcoxon rank test. The results are presented in Table 9. The first column of
Table 9 presents the compared kind of dependencies, the second, the third, and the seventh
columns demonstrate in how many cases each kind of dependency is higher (Neg. Ranks
suggest that the 2nd kind is higher, etc.). Columns 5, 6, 9, and 10 represent the results of
the Wilcoxon rank test (Z and sig.). Similarly, the results are consistent among projects,
and all differences have proven to be statistically significant.

Next, we focus on the conceptual relations among requirements, based on the CRUD
categorization (as discussed in Sect. 4.4). In Table 10, we present descriptive statistics on
the kind of requirements dependencies and the R2EM metric, for the aforementioned rela-
tions: working on the same entity and performing the same action (CRUD) on different
entities. We note that in this analysis, we treat the complete dataset as a whole. The relation
with the most intense ripple effects is denoted with grey cell shading.

Table 8 Descriptive statistics on the R2EM for each kind of requirements dependency

Metrics CREGAPI YDATA

Min Max Mean SDev Min Max Mean SDev

PCO 0.00% 20.59% 0.212% 1.178% 0.00% 29.89% 1.547% 3.350%
POI 0.00% 43.35% 2.603% 5.179% 0.00% 41.90% 14.262% 11.307%
PRE 0.00% 32.42% 1.487% 3.352% 0.00% 34.54% 8.353% 8.315%

Table 9 Hypothesis testing for CREGAPI (N = 506) and YDATA (N = 418)

CREGAPI YDATA

N Rank Z Sig N Rank Z Sig

POI–PCO Neg. Ranks 4 158.75 −18.452 0.00 0 0.00 −18.452 0.00
Pos. Ranks 460 233.14 412 206.50
Ties 42 6

PRE–PCO Neg. Ranks 16 209.94 −15.633 0.00 15 173.10 −15.633 0.00
Pos. Ranks 375 195.41 390 204.15
Ties 115 13

PRE–POI Neg. Ranks 387 250.35 −14.989 0.00 408 209.43 −14.989 0.00
Pos. Ranks 76 138.57 5 9.10
Ties 43 5

 Software Quality Journal

1 3

Based on the findings of Table 10, requirements working on the same entity are more
probable to trigger ripple effects. However, the hypothesis testing suggested that this result
is not statistically significant. This observation was discussed by one practitioner as fol-
lows: “On the one hand, working on the same entity inevitably creates ripple effects, since
a change in the number of fields in an entity affects all CRUD actions. On the other hand,
activity-related requirements are also prone to ripple effect, since in many cases there is a
sequence in the actions: the birth of a person leads to the creation of a citizen and the crea-
tion of a birth certificate. These two Create actions are almost always maintained in the
same time or under a common transaction.”

The ranking of the kind of requirements dependencies from more to less frequent is as
follows (the ranking is statistically significant): (a) dependencies due to overlap in require-
ments implementations (assessed through POI); (b) dependencies due to code ripple effects
of requirements implementations (assessed through PRE); and (c) conceptual dependencies
between requirements (assessed through PCO).

5.2 Validation of the R2EM metric (RQ2)

In this section, we present the results on evaluating the efficiency of the proposed metric in
assessing pairs of requirements, with respect to their probability to emit a ripple effect. In
Table 11, we present the correlation for the complete dataset as a whole and per project. Based
on the results, we can observe that for both projects, the ranking of the metric is strongly cor-
related (coeff. > 0.6 (Marg et al., 2014)) to the opinions of practitioners. Therefore, adequate
correlation is achieved. Regarding reliability at the project level (i.e., if the two projects have
similar results), the results on the CREGAPI project are better, compared to YDATA, an
observation that can be explained due to the smaller size of the YDATA project. Nevertheless,
the fact that the difference is small suggests that the metric is scalable, since doubling up the
number of requirements and classes, costs less than 1% correlation strength. Thus, the consist-
ency assessments can be considered reliable at the project level.

Table 10 Requirements
relations—descriptive statistics

Metric Relation Min Max Mean SDev

R2EM Same entity 0.12% 46.19% 13.18% 13.91%
Same action 0.00% 47.61% 10.96% 13.41%

PCO Same entity 0.00% 19.58% 1.14% 2.95%
Same action 0.00% 17.07% 0.85% 2.46%

POI Same entity 0.12% 38.64% 9.36% 10.57%
Same action 0.00% 41.81% 8.10% 10.60%

PRE Same entity 0.00% 31.76% 5.58% 7.14%
Same action 0.00% 34.25% 4.85% 7.49%

Table 11 Consistency and
reliability of R2EM

Requirements Spearman

Coeff Sig

Complete dataset 60.6% 0.000
CREGAPI 63.4% 0.000
YDATA 62.6% 0.000

Software Quality Journal

1 3

In Table 12, we present the correlation of R2EM with the priority that practitioners
assigned to the pairs of requirements (we remind that only a subset of requirements has
been explored as part of RQ2, due to time limitations—see Sect. 4.3). We further observe
that requirements can be divided into two main categories, denoted with gray and white
cell shading (using the 0.7 threshold for strong correlations (Marg et al., 2014)). On the
one hand, the pairs of requirements with the gray cell shading are those for which R2EM
proves to be the most accurate. This efficiency can be explained by the fact that practition-
ers consider the specific pairs of requirements to have straightforward (or highly probable)
ripple effects. For example, consider the following statements about pairs of requirements
that have been ranked very high from R2EM and deemed as having almost certain ripple
effects by practitioners:

• (From: Hydrometer Read, To: Statement Create). “To automatically create a statement,
the system has to read the data from a smart hydrometer. Therefore, any change in the
way that input is received from the device, may emit changes in the way that a state-
ment is initialized.”

• (From: Bill Read, To: Bill Update). “The relation here, is due to the use of the common
entity. In particular, if the fields that characterize a bill change, then both requirements,
will need to be updated. This is more or less a bi-directional relation.”

• (From: Birth Create, To: Citizen Create). “The two requirements are heavily coupled, in the
sense that a citizen is created upon his/her birth. Therefore, any change that is made on the
fields that we use to declare a birth is automatically transferred to the newly created citizen.”

On the other hand, the pairs of requirements exhibiting a lower correlation with R2EM
(55–69%) are those for which the practitioners had contradictory opinions between them-
selves as well. For example, regarding YDATA, the agreement of practitioners on the
requirements affected by a change in the way alerts are created is 51.1% (see Table 4) while
the correlation of R2EM to the average expert opinion is 61.3%. A possible explanation
for the deviation is the way that practitioners perceive requirements ripple effects: “Dif-
ferent people perceive each case in a different way, either because they have in mind dif-
ferent parts of the system (not all of us work on all parts of the system, although we have
a generic idea of what each requirement has to do with), or because we consider different
extension scenarios, based on our most recent experiences.”

The ranking that R2EM provides, with respect to the proneness of a pair of require-
ments to emit/receive a ripple effect, is strongly correlated (62–63%) to the expert opinion

Table 12 Validation of R2EM per requirement

System
From Requirement

of the Pair
Spearman

Coeff. Sig.

YDATA

Bill Read 78.7% 0.012

Alert Create 61.3% 0.015

Statement Create 69.4% 0.003

Payment Create 76.8% 0.017

CREGAPI

Citizen Create 78.4% 0.000

Birth Create 58.0% 0.019

Marriage Update 66.4% 0.000

Namegiving Create 54.5% 0.044

 Software Quality Journal

1 3

of practitioners. The difference between the two studied systems indicates potential for
R2EM to scale, since the system that was half the size of the other (in terms of require-
ments and source code size) had only 1% less correlation strength.

6 Discussion

Interpretation of results The case study reported in this paper had two main goals: (g1)
assessing the kind of requirements dependencies that are more probable to produce ripple
effects; and (g2) the validation of the proposed metric. Regarding (g1), two types of analy-
sis were performed: (a) based on the kind of requirements dependencies (i.e., conceptual
overlapping, overlapping implementations, and ripple effects of these implementations)
and (b) based on the requirements relations (e.g., are ripple effects more common among
requirements working on the same entity?). Based on our results, we observe the following:

• Requirements implementations vs. conceptual relevance. The implementation of
requirements appears to be more important with respect to ripple effects compared to
the requirement contract. In particular, the probability to change due to a ripple effect,
because of overlapping implementations (POI), has the highest probability to produce
ripple effects, followed by PRE (probability due to ripple effects at implementation
level). On the other hand, ripple effects between requirements due to their conceptual
overlap (PCO) has proven to be rarer (1.1–3.3%), compared to POI (5.1–11.3%) and
PRE (3.3–8.3%). These findings can be considered reasonable in the sense that concep-
tual overlap among requirements is a more abstract type of dependency compared to
dependencies in the actual source code. This is good news in terms of preventing ripple
effects: excessive dependencies among requirement implementations can be potentially
avoided adhering to the single responsibility principle, whereas conceptually related
requirements are often imposed by the problem domain and cannot be avoided.

• Central entities. In both examined systems, we have observed that some central entities
(e.g., the citizen in the municipality application) have been identified, and any change
in requirements related to such entities, is highly probable to affect many parts of the
system. We argue that high coupling poses a big risk for requirements specification as
well, in the sense that requirements associated with many other requirements or with
key elements of the architecture, are highly probable to be the cause of ripple effects.
Breaking down God Requirements to finer-grained and less coupled ones can in theory
contribute to less change propagation among them.

• Entity- vs. action-related requirements. Requirements affecting the same entity are
more probable to produce a ripple effect (PCO) compared to requirements perform-
ing the same action. However, both requirements relation types seem to have a similar
probability to experience ripple effects, due to implementation issues (POI and PRE).
Nevertheless, both types have been validated as important by the practitioners.

Regarding (g2) the results of the empirical validation suggested that the proposed metric
R2EM is a valid assessor of requirements ripple effect and can serve as a means for pre-
dicting requirements ripple effects. In particular, R2EM exhibited a strong correlation with
experts’ opinion (approx. 60%). Also, statistically significant discriminative power can be
achieved by using this metric. In principle, the aforementioned correlation is stronger for
pairs of requirements whose relation is stronger according to practitioners (i.e., a high-level

Software Quality Journal

1 3

of agreement on high values between practitioners). The validity of the R2EM metric sug-
gests that both the probability of a requirement change happening and the propagation of
changes among requirements are factors that practitioners deem as important for the criti-
cality of requirements.

Implications for researchers and practitioners Based on the above, we can derive some
advice for practitioners. First, for cases in which the proposed tool-chain is applicable, we
encourage them to use the suggested toolset so as to guide them along software mainte-
nance. To ease the adoption of R2EM, based on the suggestions of our case study partici-
pants, we encourage the integration of the tool or any similar approach in the IDE that each
company is using. Second, in case the proposed tool-chain is not applicable (e.g., not Java,
or no Git for version control), we are still able to guide software maintenance, based on the
findings of the empirical analysis on the proneness of each kind of requirements dependen-
cies on ripple effect. In particular, we advise practitioners to inspect for co-maintenance,
based on entity and then activity similarity. Additionally, we encourage practitioners to
identify the central entities in the systems that they maintain, since for them, high mainte-
nance effort would be required, due to massive ripple effects.

On the other hand, some interesting future work opportunities have been identified
for researchers. First, the ability of R2EM to successfully guide maintenance activities
through a longitudinal case study is required. For such a case, researchers working with
an industry partner could use the suggestions of the tool for a long period and evaluate:
(a) the required maintenance effort; (b) the maintenance efficiency (e.g., number of bugs
identified, effort needed for new features) when serving maintenance tickets; and (c) the
effectiveness of R2EM (i.e., if the correct artifacts that need to be changed are identified)
based on the proposed suggestions.

Additional validation could be performed by exploring the applicability of R2EM in
terms of intuitiveness and usefulness. Second, there is a need to assess the predictive power
and the tracking ability of the proposed metrics, since we were not able to validate them in
the proposed setting. Third, replications with different programming languages, and ver-
sion control systems would be required. Finally, an interesting extension scenario would be
to tailor the proposed metric to non-object-oriented paradigms, for example, by consider-
ing files or folders as units of analysis.

7 Threats to validity

In this section, we present and discuss potential threats to the validity of our case study
(Runeson et al., 2009). Internal validity is not considered, since we have not dealt with
causal relations.

Construct validity A possible threat to construct validity is related to the accuracy of the
proposed metric and the developed tool-chain to assess requirements ripple effect. Such a
threat is classified as construct validity in the sense that inaccurate results might lead to
measuring a different phenomenon than the one originally intended to investigate. Con-
cerning the rationale of the metric’s calculation, we note that its definition is clear and
well-documented (see Sect. 3), whereas the used tools have been thoroughly tested, before
deployment, in a large number of open-source projects (see Sect. 3.3). Regarding the

 Software Quality Journal

1 3

metric, we consider this threat mitigated in the sense that the provided empirical validation
suggested that the proposed measure is an accurate assessor of requirement ripple effects
(see Sect. 5). By further focusing on each probability, we acknowledge as a threat the fact
that for POI, we only consider part of the requirements evolution (i.e., those in which only
one requirement is changing). This decision might lead in losing traces between require-
ments and source code. However, we note again that this decision has been made so as to
guarantee the independence of PCO and POI. We believe that threatening the independ-
ence of two parameters would be more severe for the validity of R2EM, and therefore, we
opted to omit commits in which more than one requirement have changed due to ripple
effects. Another threat to construct validity stems from the need to calculate the percentage
of commits in which a specific requirement has changed (PCRC) based on commit mes-
sages in order to track the requirement(s) that are being affected. Lack of proper messages
implies that PCRC will not be accurately calculated. Nevertheless, an experienced devel-
oper would be able to identify the associated requirements even from the commit files if he
wishes to apply the proposed methodology.

Moreover, the case study participants may have a different background and experience
on specific requirements and thus influence the ranking that they performed. To avoid this
threat, we involved four and five employees, respectively, for each project, who were all
familiar with a large portion of the system. However, it is possible that participants have
a different perspective of ripple effects, due to the different parts of the code base that
they maintain. To mitigate this risk, we calculated their agreement rate (see Table 4). Spe-
cifically, we observed that for both systems high agreement between participants occurs.
A detailed discussion on this issue is presented in Sect. 4.3, focusing on specific pairs of
requirements with lower levels of agreement.

Reliability With regard to reliability, we consider any possible researchers’ bias, during
the data collection and data analysis process. The design of the study concerning data col-
lection does not contain threats, since the material provided to the participants included
the source code of the company and rankings of requirement pairs, as they have been cre-
ated automatically by a tool. Additionally, the researchers themselves were not required to
interpret the results at any point, since the participants were answering the tasks on paper.
Moreover, with respect to the data analysis process: (a) although the quantitative part is
not subject to bias, in the sense that statistical analysis has performed; the analysis has
been independently performed by the first two authors and the results have been cross-
checked; (b) with respect to qualitative analysis, potential threats to reliability have been to
some extent mitigated since two researchers were involved in the process, aiming at double
checking the work performed and thus reducing the chances of reliability threats.

External validity Concerning external validity, a potential threat to generalization is the
possibility that performing the study on different requirements of different companies
might affect results of the assessment. Thus, results cannot be generalized to large-scale
systems and domains other than enterprise applications. Additionally, in this study we
investigated projects written in Java due to the corresponding tool limitations. Therefore,
the results cannot be generalized to other languages, e.g., C++ . Moreover, we note that
our results are not applicable to non-object-oriented systems, since our definition of rip-
ple effects at source code level applies only in this programming paradigm. Furthermore,
our metric is not applicable for projects that are not hosted in version control management

Software Quality Journal

1 3

systems, since the calculation of PCCC requires access to the complete development his-
tory of the project. Finally, with the respect to the provided toolchain, we need to note that
its applicability cannot be guaranteed to all systems, in the sense that it considers a specific
type of annotating the link between requirements and code artifacts, through commit mes-
sages. However, this does not threaten the applicability of the method, in the sense that
given any kind of traceability between requirements and code, the first step of the toolchain
can be replaced, with an adequate tool support.

8 Conclusions

Change impact analysis at the requirements level can prove extremely useful during soft-
ware maintenance, in the sense that the artifacts that need to be changed, due to a mainte-
nance ticket, are not only those associated with updated requirements, but also those that
have been potentially affected due to ripple effects. Despite the existence of some metrics
at the design and source code level on the quantification of the ripple effect, existing litera-
ture lacks such metrics at the level of requirements. In this paper, we introduce such a met-
ric (namely R2EM) by considering several scenarios that can lead to ripple effects between
requirements, such as conceptual overlapping and structural dependencies between their
implementations. The metric has been validated in an industrial setting, based on the guide-
lines for metric validation provided by the 1061–1998 IEEE Standard. In particular, we
analyzed the source code and the commit history of two industrial products, recorded the
strength of relations between requirements, and contrasted them with experts’ opinion. The
results of the study suggested that the proposed metric is capable of assessing requirements
ripple effects at a satisfactory level, and that the most common reason for ripple effects
between requirements lies at the implementation level. The results of the study, including
both the metric per se (and accompanying tool), and the empirical findings on the kinds of
requirements dependencies that can lead to requirements ripple effects are expected to be
useful in both academia and software development industry, since many useful implica-
tions to researchers and practitioners have been extracted.

Appendix: case study material

Case study time plan

Task Duration

’51ydutSehTfOslaoGehTdnAtnetnoCehToTnoitcudortnI

’53stnemeriuqeRfOgniknaR—eriannoitseuQ:1traP

’01kaerB

’51stluseReriannoitseuQfOyrammuS:2traP

’5kaerB

Part 3: Focus Group—Discussion On Relations Between Requirements 30’

 Software Quality Journal

1 3

Questionnaires

The questionnaire will be structured as follows for all selected requirements: Bill Read
(YDATA-BR), Alert Create (YDATA-LC), Statement Create (YDATA-SC), Payment Create
(YDATA-PC), Citizen Create (CR-CC), Birth Create (CR-BC), Marriage Update (CR-MU),
and Name-giving Create (CR-NC).

Focus group questions

1) Do you think that requirements, which deal with the same entity are probable to co-
change due to the ripple effect?

a. CR-CU with CR-CC (high)
b. CR-MU with CR-MR (medium)
c. CR-PD with CR -PR (low)

2) Do you think that requirements, which perform the same action are probable to co-
change due to the ripple effect?

a. CR-MC with CR-CC (high)
b. CR-CU with CR-NU (medium)
c. CR-BD with CR-MD (low)

3) Do you think that requirements, which deal with the same entity are probable to co-
change due to the ripple effect?

a. YDATA-BU with YDATA-BR(high)
b. YDATA-SR with YDATA-SD (medium)
c. YDATA-HU with YDATA-HD (low)

4) Do you think that requirements, which perform the same action on different entities are
probable to co-change due to the ripple effect?

a. YDATA-HR with YDATA-AR (high)
b. YDATA-UC with YDATA-PC (medium)
c. YDATA-LR with YDATA-PR (low)

5) Which of the aforementioned classes are the most important?

Software Quality Journal

1 3

Please denote how probable you believe it is to change the below-mentioned requirements, if you perform

a change to the Bill Read requirement in the YDATA project, due to a ripple effect?

Affected

Req.

1

(VL)

2

(L)

3

(N)

4

(H)

5

(VH) Justification

YDATA-HR

YDATA-LC

YDATA-SC

YDATA-UU

YDATA-UR

YDATA-PC

YDATA-BC

YDATA-HC

YDATA-UC

YDATA-BU

YDATA-SR

YDATA-SU

YDATA-HU

YDATA-SD

YDATA-PR

YDATA-HD

YDATA-PU

YDATA-LR

YDATA-CC

YDATA-BR

YDATA-SC

YDATA-UU

YDATA-UR

YDATA-PC

YDATA-BC

YDATA-HC

YDATA-UC

YDATA-BU

YDATA-SR

YDATA-SU

YDATA-HU

YDATA-SD

YDATA-PR

YDATA-HD

YDATA-PU

YDATA-LR

YDATA-CC

Please denote how probable you believe it is to change the below-mentioned requirements, if you perform

a change to the Alert Create requirement in the YDATA project, due to a ripple effect?

Affected

Req.

1

(VL)

2

(L)

3

(N)

4

(H)

5

(VH) Justification

YDATA-HR

 Software Quality Journal

1 3

Please denote how probable you believe it is to change the below-mentioned requirements, if you perform

a change to the Statement Create requirement in the YDATA project, due to a ripple effect?

Affected

Req.

1

(VL)

2

(L)

3

(N)

4

(H)

5

(VH) Justification

YDATA-HR

YDATA-LC

YDATA-BR

YDATA-UU

YDATA-UR

YDATA-PC

YDATA-BC

YDATA-HC

YDATA-UC

YDATA-AU

YDATA-SR

YDATA-SU

YDATA-HU

YDATA-SD

YDATA-PR

YDATA-HD

YDATA-PU

YDATA-LR

YDATA-CC

Please denote how probable you believe it is to change the below-mentioned requirements, if you perform

a change to the Payment Create requirement in the YDATA project, due to a ripple effect?

Affected

Req.

1

(VL)

2

(L)

3

(N)

4

(H)

5

(VH) Justification

YDATA-HR

YDATA-LC

YDATA-SC

YDATA-UU

YDATA-UR

YDATA-BU

YDATA-BC

YDATA-HC

YDATA-UC

YDATA-BR

YDATA-SR

YDATA-SU

YDATA-HU

YDATA-SD

YDATA-PR

YDATA-HD

YDATA-PU

YDATA-LR

YDATA-CC

Software Quality Journal

1 3

Please denote how probable you believe it is to change the below-mentioned requirements, if you perform

a change to the Citizen Create requirement in the GREGAPI project, due to a ripple effect?

Affected

Req.

1

(VL)

2

(L)

3

(N)

4

(H)

5

(VH) Justification

CR-CR

CR-CU

CR-MC

CR-BC

CR-DC

CR-MU

CR-PC

CR-MR

CR-PU

CR-NC

CR-BR

CR-BU

CR-PD

CR-CD

CR-DU

CR-DR

CR-MD

CR-NR

CR-NU

Please denote how probable you believe it is to change the below-mentioned requirements, if you perform

a change to the Birth Create requirement in the GREGAPI project, due to a ripple effect?

Affected

Req.

1

(VL)

2

(L)

3

(N)

4

(H)

5

(VH) Justification

CR-CR

CR-CU

CR-CC

CR-MC

CR-MR

CR-DC

CR-MU

CR-PC

CR-PU

CR-NC

CR-BR

CR-BU

CR-PD

CR-CD

CR-DU

CR-DR

CR-MD

CR-NR

CR-NU

 Software Quality Journal

1 3

Please denote how probable you believe it is to change the below-mentioned requirements, if you perform

a change to the Marriage Update requirement in the GREGAPI project, due to a ripple effect?

Affected

Req.

1

(VL)

2

(L)

3

(N)

4

(H)

5

(VH) Justification

CR-CR

CR-CU

CR-CC

CR-MC

CR-BC

CR-DC

CR-PC

CR-MR

CR-PU

CR-NC

CR-BR

CR-BU

CR-PD

CR-CD

CR-DU

CR-DR

CR-MD

CR-NR

CR-NU

Please denote how probable you believe it is to change the below-mentioned requirements, if you perform

a change to the Name-giving Create requirement in the GREGAPI project, due to a ripple effect?

Affected

Req.

1

(VL)

2

(L)

3

(N)

4

(H)

5

(VH) Justification

CR-CR

CR-CU

CR-CC

CR-MC

CR-BC

CR-DC

CR-MU

CR-PC

CR-MR

CR-PU

CR-BR

CR-BU

CR-PD

CR-CD

CR-DU

CR-DR

CR-MD

CR-NR

CR-NU

Software Quality Journal

1 3

Funding This work was financially supported by the action “Strengthening Human Resources Research
Potential via Doctorate Research” of the Operational Program “Human Resources Development Program,
Education and Lifelong Learning, 2014–2020”, implemented from State Scholarship Foundation (IKY) and
co-financed by the European Social Fund and the Greek public (National Strategic Reference Framework
(NSRF) 2014–2020).

References

Ali, N., Jaafar, F., & Hassan, A. E. (2013). Leveraging historical co-change information for requirements traceabil-
ity. 20th Working Conference on Reverse Engineering (WCRE’ 13). Germany.

Ampatzoglou, A., Chatzigergiou, A., Charalampidou, S., & Avgeriou, P. (2015). The Effect of GoF Design
Patterns on Stability: A Case Study. Transactions on Software Engineering, 41(8), 781–802.

Antoniol, G., Canfora, G., Casazza, G., & De Lucia, A. (2000). Identifying the starting impact set of a main-
tenance request: a case study. 4th European Conference on Software Maintenance and Reengineering.
Zurich. Switzerland.

Arora, C., Sabetzadeh, M., Goknil, A., Briand, L. C., & Zimmer, F. (2015). Change impact analysis for
Natural Language requirements: An NLP approach. 23rd International Requirements Engineering
Conference (RE). Ottawa.

Arvanitou, E. M., Ampatzoglou, A., Chatzigeorgiou, A., & Avgeriou, P. (2015). Introducing a ripple effect
measure: a theoretical and empirical validation. 9th International Symposium on Empirical Software
Engineering and Measurement (ESEM ‘15). China.

Arvanitou, E. M., Ampatzoglou, A., Chatzigeorgiou, A., & Avgeriou, P. (2017). A Method for Assessing
Class Change Proneness. 21st International Conference on Evaluation and Assessment in Software
Engineering (EASE ’17). ACM, Sweden.

Arvanitou, E. M., Ampatzoglou, A., Tzouvalidis, K., Chatzigeorgiou, A., Avgeriou, P., & Deligiannis, I.
(2017). Assessing Change Proneness at the Architecture Level: An Empirical Validation. 1st Interna-
tional Workshop on Emerging Trends in Software Design and Architecture (WETSoDA ’17). Nanjing,
China.

Basso, F. P., Pillat, R. M., Oliveira, T. C., Roos-Frantz, F., & Frantz, R. Z. (2016). Automated design of
multi-layered web information systems. Journal of Systems and Software., 117, 612–637.

Beck, K., & Cunningham, W. (1989). A laboratory for teaching object oriented thinking. Conference pro-
ceedings on Object-oriented programming systems, languages and applications (OOPSLA ’89), 1–6.
USA.

Buse, R. P. L., & Weimer, W. R. (2010). Automatically documenting program changes. International con-
ference on Automated software engineering (ASE ’10), 33–42. Belgium.

Charalampidou, S., Ampatzoglou, A., Karountzos, E., & Avgeriou, P. (2020). Empirical studies on software
traceability: A mapping study. Journal of Software: Evolution and Process, 32 (11). Wiley and Sons.

Chen, J. -C., & Huang, S. -J. (2009). An empirical analysis of the impact of software development problem
factors on software maintainability. Journal of Systems and Software., 82(6), 981–992.

Conejero, J. M., Figueiredo, E., Garcia, A., Hernández, J., & Jurado, E. (2012). On the relationship of con-
cern metrics and requirements maintainability. Information and Software Technology, 54(2), 212–238.

Dahlstedt, A. G., & Persson, A. (2005). Requirements Interdependencies: State of the Art and Future Chal-
lenges. Engineering and Managing Software Requirements. Springer. pp 95–116.

Field, A. (2013). Discovering Statistics using IBM SPSS Statistics. SAGE Ltd.
Fowler, M. (2003). UML Distilled: A Brief Guide to the Standard Object Modeling Language. Addison-

Wesley Professional. 3rd Edition.
Galorath, D. D. (2008). Software total ownership costs: development is only job one. Software Tech

News, 11(3).
Goknil, A., Kurtev, I., & van den Berg, K. (2008). Change impact analysis based on formalization of trace rela-

tions for requirements. 4th ECMFA Traceability Workshop.
Goknil, A., Kurtev, I., van den Berg, K., & Spijkerman, W. (2014). Change impact analysis for require-

ments: A metamodeling approach. Information and Software Technology., 56(8), 950–972.
González-Aparicio, M. T., Younas, M., Tuya, J., & Casado, R. (2016). A New Model for Testing CRUD

Operations in a NoSQL Database. 30th International Conference on Advanced Information Networking
and Applications (AINA), Crans-Montana.

Hassine, J., Rilling, J., Hewitt, J., & Dssouli, R. (2005). Change impact analysis for requirement evolution
using use case maps. 8th International Workshop on Principles of Software Evolution (IWPSE’05).
Lisbon. Portugal.

 Software Quality Journal

1 3

ISO, IEC 9126–1. (2001). Software engineering - Product quality (Part 1: Quality model) Switzerland.
Kagdi, H., Maletic, J., & Sharif, B. (2009). Mining software repositories for traceability links. 15th Interna-

tional Conference on Program Comprehension (ICPC ’07), 145 –154.
Kaur, K., & Rani, R. (2015). Managing Data in Healthcare Information Systems: Many Models, One Solu-

tion. Computer, 48(3), 52–59.
Kitchenham, B., & Pfleeger, S. L. (1996). Software quality: The elusive target. IEEE Software, 13(1), 12–21.
Krestou, M., Arvanitou, E. M., Ampatzoglou, A., Deligiannis, I., & Gerogiannis, V. (2021). Change impact

analysis: A systematic mapping study. Journal of Systems and Software, 173.
Marg, L., Luri, L. C., O’Curran, E., & Mallett, A. (2014). Rating Evaluation Methods through Correlation.

1st Workshop on Automatic and Manual Metrics for Operational Translation Evaluation (MTE ’14).
Reykjavik, Iceland.

Nejati, S., Sabetzadeh, M., Arora, C., Briand, L. C., & Mandoux, F. (2016). Automated Change Impact
Analysis between SysML Models of Requirements and Design. 24th International Symposium on
Foundations of Software Engineering (FSE’16), Seattle, USA.

Queille, J. -P., Voidrot, J. -F., Wilde, N., & Munro, M. (1994). The impact analysis task in software main-
tenance: A model and a case study. International Conference on Software Maintenance, Victoria,
Canada.

Rahman, M. A., Razali, R., & Singh, D. (2014). A risk model of requirements change impact analysis. Jour-
nal of Software., 9(1), 76–81.

Runeson, P., Höst, M., Rainer, A., & Regnell, B. (2009). Case study research in software engineering:
Guidelines and examples. John Wiley and Sons. Inc.

Spinellis, D., Gousios, G., Karakoidas, V., Louridas, P., Adams, P. J., Samoladas, I., & Stamelos, I. (2009).
Evaluating the Quality of Open Source Software. Electronic Notes in Theoretical Computer Science
(ENTCS), 233(3), 5–28.

Standard for a Software Quality Metrics Methodology. (2009). IEEE Standards. IEEE Computer Soci-
ety, 1061–1998. Reaffirmed Dec. 2009.

Truica, C., Radulescu, F., Boicea, A., & Bucur, I. (2015). Performance Evaluation for CRUD Operations in
Asynchronously Replicated Document Oriented Database. 20th International Conference on Control
Systems and Computer Science. Bucharest.

Zhang, H., Li, J., Zhu, L., Jeffery, R., Liu, Y., Wang, Q., & Li, M. (2014). Investigating dependencies in
software requirements for change propagation analysis. Information and Software Technology. Else-
vier., 56(1), 40–53.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Dr. Elvira‑Maria Arvanitou is a Post-Doctoral Researcher at the Depart-
ment of Applied Informatics, in the University of Macedonia, Greece.
She holds a Ph.D. degree in Software Engineering from the Univer-
sity of Groningen (Netherlands, 2018), an M.Sc. degree in Information
Systems from the Aristotle University of Thessaloniki, Greece (2013),
and a B.Sc. degree in Information Technology from the Technologi-
cal Institute of Thessaloniki, Greece (2011). Her Ph.D. thesis has
been awarded as being part of the top-3 ICT-related in Netherlands for
2018. Her research interests include technical debt management, soft-
ware quality metrics, and software maintainability.

Software Quality Journal

1 3

Dr. Apostolos Ampatzoglou is an Assistant Professor in the Department of
Applied Informatics in University of Macedonia (Greece), where he carries
out research and teaching in the area of software engineering. Before joining
University of Macedonia, he was an Assistant Professor in the University of
Groningen (Netherlands). He holds a BSc on Information Systems (2003),
an MSc on Computer Systems (2005) and a PhD in Software Engineer-
ing by the Aristotle University of Thessaloniki (2012). He has published
more than 100 articles in international journals and conferences, and is/
was involved in over 15 R&D ICT projects, with funding from national and
international organizations. His current research interests are focused on
technical debt management, software maintainability, reverse engineering
software quality management, open source software, and software design.

Dr. Alexander Chatzigeorgiou is a Professor of Software Engineering
in the Department of Applied Informatics and Dean of the School of
Information Sciences at the University of Macedonia, Thessaloniki,
Greece. He received the Diploma in Electrical Engineering and the
PhD degree in Computer Science from the Aristotle University of
Thessaloniki, Greece, in 1996 and 2000, respectively. From 1997 to
1999 he was with Intracom S.A., Greece, as a software designer. His
research interests include object-oriented design, software mainte-
nance, technical debt and evolution analysis. He has published more
than 150 articles in international journals and conferences and partici-
pated in a number of European and national research programs. He is a
Senior Associate Editor of the Journal of Systems and Software.

Dr. Paris Avgeriou is Professor of Software Engineering in the
Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen, the Netherlands where he has led the Soft-
ware Engineering research group since September 2006. Before join-
ing Groningen, he was a post-doctoral Fellow of the ERCIM. He has
participated in a number of national and European research projects
related to the European industry of Software-intensive systems. He
has co-organized several international conferences and workshops
(mainly at the International Conference on Software Engineering
- ICSE). He sits on the editorial board of Springer Transactions on
Pattern Languages of Programming (TPLOP). He has edited spe-
cial issues in IEEE Software, Journal of Systems and Software and
Springer TPLOP. He has published more than 130 peer-reviewed

articles in international journals, conference proceedings and books. His research interests lie in the area
of software architecture, with strong emphasis on architecture modeling, knowledge, evolution, patterns
and link to requirements.

Mr. Nikolaos Tsiridis is the Chief Technical Officer of the Research
& Development Department of Open Technologies Services (OTS).
He holds a BSc. Degree on Information Technology, from Alexander
Technological Educational Institute of Thessaloniki, Greece. He works
with OTS for more than 15 years and has managed many research and
development projects. His research interests include software project
management, requirements-to-code traceability, and software quality
assessment.

	A metric for quantifying the ripple effects among requirements
	Abstract
	1 Introduction
	2 Related work
	3 Requirements ripple effect metric (R2EM)
	3.1 Requirements Ripple effect metric (R2EM Definition)
	3.2 Illustrative example
	3.3 Proposed tool chain

	4 Case study design
	4.1 Research questions
	4.2 Case selection
	4.3 Data collection
	4.4 Data analysis

	5 Results
	5.1 Proneness to ripple effects for each kind of requirements dependencies (RQ1)
	5.2 Validation of the R2EM metric (RQ2)

	6 Discussion
	7 Threats to validity
	8 Conclusions
	References

