
Applying the Single Responsibility Principle in Industry:

Modularity Benefits and Trade-offs
Apostolos Ampatzoglou, Angeliki-Agathi Tsintzira, Elvira-Maria Arvanitou, Alexander Chatzigeorgiou, Ioannis Stamelos,

Alexandru Moga, Robert Heb, Oliviu Matei, Nikolaos Tsiridis, Dionisis Kehagias

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

Holisun, Baia Mare, Romania

Open Technology Services, Thessaloniki, Greece

Information and Technology Institute, Center for Research and Technology, Thessaloniki, Greece

apostolos.ampatzoglou@gmail.com, angeliki.agathi.tsintzira@gmail.com, earvanitoy@gmail.com, achat@uom.gr,

stamelos@csd.auth.gr, alexandru.moga@holisun.com, robert.heb@holisun.com, oliviu.matei@holisun.com,

ntsiridis@gmail.com, diok@iti.gr

ABSTRACT

Refactoring is a prevalent technique that can be applied for im-

proving software structural quality. Refactorings can be applied at

different levels of granularity to resolve ‘bad smells’ that can be

identified in various artifacts (e.g., methods, classes, packages). A

fundamental software engineering principle that can be applied at

various levels of granularity is the Single Responsibility Principle

(SRP), whose violation leads to the creation of lengthy, complex

and non-cohesive artifacts; incurring smells like Long Method,

God Class, and Large Package. Such artifacts, apart from being

large in size tend to implement more than one functionalities,

leading to decreased cohesion, and increased coupling. In this pa-

per, we study the effect of applying refactorings that lead to con-

formance to the SRP, at all three levels of granularity to identify

possible differences between them. To study these differences, we

performed an industrial case study on two large-scale software

systems (more than 1,500 classes). Since SRP is by definition re-

lated to modularity, as a success measure for the refactoring we

use coupling and cohesion metrics. The results of the study can

prove beneficial for both researchers and practitioners, since vari-

ous implications can be drawn.

CCS CONCEPTS
Software and its engineering → Software creation and manage-

ment → {Software development techniques → Object-oriented

development}

KEYWORDS
Refactorings, industrial case study, modularity, software metrics

ACM Reference Format

A Ampatzoglou, A. A. Tsintzira, E. M. Arvanitou, A. Chatzigeorgiou, I.

Stamelos, A. Moga, R. Heb, O. Matei, N. Tsiridis, and D. Kehagias,

“Benefits of Applying the Single Responsibility Principle to Repay Tech-

nical Debt: An Industrial Case Study”, In Proceedings of 23rd Conference

on the Evaluation and Assessment in Software Engineering (EASE’ 19),

Copenhagen, Denmark, 15-17April 2019.

1 Introduction

According to the seminal book of Hans van Vliet, software design

should consider four aspects: abstraction, modularity, information

hiding, and complexity [18]. Among those, in this paper we focus

on software modularity, which is defined as the “degree to which

a system or computer program is composed of discrete compo-

nents such that a change to one component has minimal impact on

other components [1]”. According to Martin [14] the levels of

modularity can be assured by applying the Single Responsibility

Principle (SRP). SRP states that every module should have exact-

ly one responsibility, i.e., be related to only one functional re-

quirement, and therefore have only one reason to change. The

term single responsibility has been inspired by the functional

module decomposition, as introduced by Tom De Marco [7]. To

assess if a class conforms to the SRP, one needs to assess its cohe-

sion [14], which is related to the number of diverse functionalities

that a class is responsible for [7]. However, by considering the

inherent reverse relation between coupling and cohesion, proper

application the SRP, shall not only consider the improvement of

artifacts’ cohesion, but also possible trade-offs between coupling

and cohesion (i.e., enhancing one can diminish the other) [18].

Lack of modularity can lead to the existence of various smells,

based on the artifact that it is applied to: Long Methods (that are

resolved through the Extract Method refactoring [4]), God Classes

(that are resolved through the Extract Class refactoring [9]), and

Permission to make digital or hard copies of all or part of this work for per-

sonal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EASE '19, April 15-17, 2019, Copenhagen, Denmark

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5933-7/19/04…$15.00

https://doi.org/10.1145/3319008.3320125

mailto:earvanitoy@gmail.com
mailto:stamelos@csd.auth.gr
mailto:alexandru.moga@holisun.com
mailto:robert.heb@holisun.com
mailto:oliviu.matei@holisun.com
mailto:ntsiridis@gmail.com
mailto:diok@iti.gr
mailto:permissions@acm.org
https://doi.org/10.1145/3319008.3320125

EASE’ 19, April 2019, Copenhagen, Denmark Ampatzoglou et al.

Large Packages (that are resolved through the Move Class refac-

toring [16]). All the aforementioned smells, follow the same pat-

tern: there is a large in size artifact that among others, is related to

more than one responsibilities. The solution would be to split this

artifact into smaller ones, maintaining the external behavior of the

system. For the majority of the cases, the presence of the smell is

resolved by examining the cohesion of the long artifact, and create

new ones with better levels of cohesion. Although the benefit of

applying these refactorings in terms of cohesion is safeguarded by

the nature of the proposed approaches (i.e., cohesion-based opti-

mizations), the effect on modularity remains vague, since if cou-

pling substantially deteriorates, then modularity might be harmed.

Driven by the above setting, in this paper we investigate the effect

of applying the Single Responsibility Principle on software modu-

larity at three levels of granularity: (a) method-, (b) class-, and (c)

package-level. Additionally, by considering that quality trade-offs

rarely occur in small-scale applications, we preferred to perform a

case study on real-world artifacts, retrieved from an industrial set-

ting. In particular, we have studied two systems with long evolu-

tion history and large size, and manually performed refactorings at

all three levels. Then we compare: (a) the effect of the refactor-

ings on modularity, regardless of the level of granularity, (b) the

effect of the refactorings on modularity, given the level of granu-

larity, and (c) the trade-offs between coupling and cohesion when

applying the refactoring, in all levels of granularity.

The rest of the paper is organized as follows: Section 2 provides

brief background information on coupling, cohesion, the metrics

that have been used for measuring them, and the tools that we

have opted for getting refactoring suggestions. Section 3 presents

the case study design. In Section 4 we present the results of the

industrial case study, which we discuss in Section 5, in which we

also conclude the paper.

2 Background Information and Used Tools

In a typical Object-Oriented (OO) system, methods and attributes

are grouped together in classes, based on their functional similari-

ty. In order for a class to be modular, methods that belong to the

same class are expected to highly interact with the attributes of the

class (high-cohesion), whereas dependencies to methods belong-

ing to different classes should be limited (low-coupling). For ex-

ample, in Figure 1(a), we can observe (through an artificial exam-

ple) that in class C1 there are two groups of pairs of methods and

attributes: (a) method m1 uses attributes a1 and a2, and (b)

method m2 uses a3 and a4, whereas method m3 uses a4. Thus,

based on SRP, class C1 needs to be slit. It should be noted that

class C1 is coupled to class C2 because of method invocations

(one coupling relationship). After the application of SRP (see Fig-

ure 1(b)), we split class C1 into two new classes: (a) C1a—m1

method with a1 and a2 attributes, and (b) C1b—m2 method

with a3 and a4 attributes and m3 method. By assessing the

modularity of the system, we can observe that the lack of cohesion

after the application of SRP becomes zero, whereas the coupling

increases (two coupling relationships). Therefore, the assessment

of modularity cannot be conclusive, since there is a trade-off be-

tween the two quality properties that comprise it. We note, that

since the goal of this example is to only demonstrate SRP, we do

not continue the narration on how C2 could be split.

(a) Design-before the application SRP

(b) Design-after the application SRP

Figure 1. Modularity Example

The measurement of coupling and cohesion is differentiated,

based on the artifact that is being examined: At the package / ar-

chitecture level, we employ the metrics presented by Skiada et al.

[17], namely Average Coupling Afferent (ACa), which represents

the average afferent coupling of packages. Afferent coupling is

the number of outgoing dependencies of a package to other pack-

ages; and Cohesion among Package Classes (CaPC), which as-

sesses how closely two classes that belong to the same package

collaborate with each other. The metric is inspired by reversing

the calculation of Lack of Cohesion of Methods [6]: we compute

the total number of pairs of classes that belong to one package,

and then we investigate the percentage of these pairs that are co-

herent (i.e., they are coupled to each other). At the class level we

use: Message Passing Coupling (MPC), which measures the

number of method calls defined in methods of a class to methods

in other classes, and therefore the dependency of local methods to

methods implemented by other classes [12]; and Lack of Cohe-

sion-5 (LCOM5), which measures the degree to which methods

and fields within a class are related to one another, providing one

or more components [11]. At the method level, we use the trans-

formation presented by Charalampidou et al. [5] to develop meth-

od-level metrics from LCOM5 and MPC. Finally, modularity is

obtained by dividing coupling by cohesion: when lack of cohesion

Applying the Single Responsibility Principle in the Industry:

Modularity Benefits and Trade-offs

EASE’ 19, April 2019, Copenhagen, Denmark

is measured, we reversed them (1-metric score) to obtain

cohesion (all metrics are bounded to 1).

Regarding the identification of refactoring opportunities, we have

used three different tools, described as follows:

 Method-level refactoring: We used the SEMI tool developed

by the University of Groningen [4].

 Class-level refactoring: We used jDeodorant, developed by the

University of Macedonia and Concordia University [9].

 Architecture-level refactoring: We used the MCR tool, devel-

oped by the University of Western Macedonia.

All tools have been used with their initial configuration for refac-

torings opportunities identification. The tools calculate the select-

ed metrics before and after the application of the change. The only

exception is jDeodorant that does not calculate LCOM5 at class

level; thus, we used a NetBeans plug-in for this calculation.

3 Case Study Design

To investigate the effect of applying the Single Responsibility

Principle on modularity, we performed an industrial case study in

two small-medium enterprises (SMEs), one in Greece and one in

Romania. The Greek SME is active in enterprise applications,

whereas the Romanian one in Augmented Reality systems for

Smart Manufacturing. The case study is designed according to the

guidelines by Runeson et al. [15].

Objective and Research Question. This study aims to compare:

(goal-a) the effect of the refactorings on modularity, and (goal-b)

the trade-offs between coupling and cohesion. (Goal-a) is exam-

ined by first not considering the level of granularity of the artifact,

in which the refactoring takes place, and (Goal-b) by taking this

parameter into account. To this end, we derived three questions:

RQ1: What is the effect of applying the SRP on modularity?

RQ2: Is the effect of applying the SRP on modularity, different

based on the granularity of the artifact?

RQ3: Are the trade-offs between coupling and cohesion different

based on the granularity of the artifact?

RQ1 and RQ2 are related to goal-a, whereas RQ3 is related to

goal-b. We preferred not to split goal-b to two research questions,

due to space limitations. Achieving goal-a is expected to shed

light on the effect of the refactoring on modularity as a whole,

whereas in goal-b, we aim digging further into the two quality

properties that comprise modularity.

Case Selection and Units of Analysis. To collect data for our case

study, we executed the three tools mentioned in Section 2 on the

source code of two projects (written in Java) of the collaborating

SMEs, as described below:

 YDATA (developed by OTS) deals with customer management

and billing of the national water supplier. It consists of 651

classes (45K lines of code) that have been developed and main-

tained for 384 commits between 2015 and 2017. YDATA can

be decomposed into 6 main sub-systems, each one managing

the following entities: (a) Hydrometers, (b) Bills, (c) Users, (d)

Consumption Statements, (e) Payments, and (f) Alerts to Users.

 MaQuali (developed by Holisun—HS) is a software applica-

tion for the handling of quality management systems (ISO

9001) along with business processes. It consists of 990 classes

(152K lines of code) that have been developed between 2009

and 2018. The system consists of 6 main modules, managing

the following entities: (a) fiches of progress, (b) actions to be

taken, (c) documents involved in ISO quality control, (d) plan-

ning, (e) useful information, and (f) milestones.

Regarding the identification of refactorings we used the complete

code base, and considered the most urgent ones based on the sug-

gestions of the tools (usually in terms of severity). Therefore, the

units of our analysis are 131 artifacts (packages, classes, and

methods) that are selected based on the aforementioned strategy.

As observed in Table I, the dataset can be split into 6 distinct da-

tasets, based on the company from which data have been retrieved

and the level of granularity at which refactoring is applied.

TABLE I. UNITS OF ANALYSIS

Dataset Company Level

DS1 HS Packages

DS2 OTS Packages

DS3 HS Classes

DS4 OTS Classes

DS5 HS Methods

DS6 OTS Methods

Data Collection. To answer the stated research questions, the next

steps are followed:

 identify refactoring opportunities (see Section 2 for tools)

 identify the artifacts that need refactoring

 for these artifacts calculate coupling and cohesion (cou-

plingbefore and couplingbefore)

 apply the refactorings

 for the resulting artifacts calculate coupling and cohesion

(couplingafter and couplingafter)

 Finally, we calculate modularitybefore and modular-

ityafter the application of the change by dividing cohesion

to coupling.

Our dataset consists of 131 rows and 9 columns as follows:

[V1] company: OTS / HS

[V2] level: architecture / design / implementation

[V3–V5] cohesion metrics: cohbefore, cohafter, cohdiff

[V6–V8] coupling metrics: coupbefore, coupafter, coupdiff

[V9–V11] modularity metrics: modbefore, modafter, moddiff

Data Analysis. As part of data analysis, we first present some de-

mographics on the before and after variables of the quality

http://www.cs.rug.nl/search/uploads/Resources/lm_tool.zip
https://marketplace.eclipse.org/content/jdeodorant
https://github.com/AngelikiTsintzira/Move-Class-Refactoring-Tool

EASE’ 19, April 2019, Copenhagen, Denmark Ampatzoglou et al.

properties of interest (coupling, cohesion, and modularity). Then,

we perform independent sample t-tests for investigating possible

differences between the two industrial codebases, and if their re-

sults can be treated as one dataset. For answering the aforemen-

tioned research questions we are using the analysis strategy pre-

sented in Table II, which includes visualization techniques and

hypothesis testing. We note that V1 is used only for demographic

reasons, and V2 is used for splitting purposes in RQ2 and RQ3.

TABLE II. ANALYSIS STRATEGY

RQ Dataset Variables Analysis

RQ1 Complete
V11 Pie chart

V9, V10 Paired-Sample t-test

RQ2

DS1 + DS2

DS3 + DS4

DS5 + DS6

V11 Pie chart

V9, V10 Paired-Sample t-test

RQ3

DS1 + DS2

DS3 + DS4

DS5 + DS6

V5, V8 Pie chart

V3-V4 and V6-V7 Paired-Sample t-test

4 Results

In this section we present the results of our industrial study. In

Table III we present the descriptive statistics of our sample. Addi-

tionally, a hypothesis testing has been performed, so as to investi-

gate if the mean values presented in Table III are statistically dif-

ferent between the two companies. The results of the analysis

suggested that the mean values do not differ significantly, and that

therefore the sample can be used as a whole, without a need for

reliability and generalization assessment [2]. We note that in this

section we do not provide any interpretation of results, since they

are thoroughly discussed in Section 5.

TABLE III. DESCRIPTIVE STATISTICS

 Metric Min Max Mean SDev.

cohesion_before 0.000 0,980 0,173 0,337

cohesion_after 0.000 0,954 0,142 0,275

coupling_before 0.045 36,500 15,112 14,654

coupling_after 0,042 36,000 14,773 14,379

modularity_before 0,000 268,000 5,241 20,934

modularity_after 0,000 200,000 5,4772 16,840

Effect of Refactorings on Modularity. As a first step of investi-

gating the effect of applying SRP-driven refactorings on artifacts’

modularity (regardless of granularity), we treat the complete da-

taset as a whole (RQ1). The overview presented in Figure 2, sug-

gests that in 80% of the cases the refactoring has a positive effect

on artifacts’ modularity. However, the performed hypothesis test-

ing (paired-sample t-test) suggested that this result is not statisti-

cally significant, i.e., the differences in the mean values of modu-

larity before and after the application of the refactoring are

not statistically significant. A possible interpretation of this obser-

vation is the fact that in 28% of the cases the improvement was

marginal (e.g., 0.001), especially in architecture level (packages).

Figure 2. Effect on Modularity (no distinction of granularity)

As a next step, we treat each level of granularity separately and

repeat the analysis. The obtained results are presented in Figure 3

and Table IV. The results suggest the SRP-driven refactoring is

having a positive influence (that is statistically significant) at all

levels of granularity. However, the expected benefit at the archi-

tecture level in absolute numbers is lower. Nevertheless, based on

Figure 3 we can observe that at the architecture level, we are only

having positive and limited neutral effects on modularity.

(a) Method Level (b) Class Level

(c) Architecture Level

Figure 3. Effect on Modularity in different levels of granularity

TABLE IV. HYPOTHESIS TESTING FOR MODULARITY

Level Before After Improvement t-value sig.

Method 0.45 1.03 128.89% -3.331 0.00

Class 0.66 1.51 128.79% -2.297 0.03

Architecture 1.64 2.34 42.68% -2.546 0.01

SRP-driven refactoring approaches are in most of the cases im-

proving the modularity of the software. The improvement is more

evident in terms of actual impact at the method and class level.

However, at the architecture level the frequency of cases when the

refactoring is beneficial is higher compared to the other levels,

and there are no cases that the refactoring is harmful.

Applying the Single Responsibility Principle in the Industry:

Modularity Benefits and Trade-offs

EASE’ 19, April 2019, Copenhagen, Denmark

Trade-offs between Coupling and Cohesion. To investigate the

trade-offs between coupling and cohesion when refactoring, we

have followed the same process as before. The results are present-

ed in Table V and Figure 4. We note that all tools that have been

used for identifying refactoring opportunities are optimizing one

of the two quality properties (directly affected): method and class

level refactorings are extracted based on cohesion, whereas at the

architecture level the optimization is performed based on cou-

pling. Therefore, while studying trade-offs, by construction, the

used tools guarantee the improvement of one quality property, and

the levels of the other one (indirectly affected) is being investigat-

ed. We report the findings for each level of granularity separately:

 Method level: We can observe that there is a marginal trade-off

between the quality properties in terms of mean values; howev-

er, the results on the deterioration of coupling are marginal and

not statistically significant. Regarding the frequency of im-

provement and deterioration, in Figure 4a, we can observe that

the sample is balanced.

 Class level: This is the only level at which substantial trade-offs

are evident (i.e., benefit in cohesion and deterioration of cou-

pling in Table V when extracting a class from a God one). Fig-

ure 4b, suggests that the count of cases in which coupling dete-

riorates is higher compared to the times it improves.

 Architecture-level: Finally, with respect to architecture no

trade-offs are evident. More specifically, coupling is always

improving (see Figure 4c) and the difference between coupling

scores before and after is statistically significant. However,

with respect to indirectly affected quality property (i.e., cohe-

sion) the difference is not statistically significant, although the

effect is positive in average. This observation is due to the fact

that in 75% of cases that coupling is improving, there is no ef-

fect on cohesion (grey area in Figure 4c).

TABLE V. HYPOTHESIS TESTING FOR TRADE-OFFS

Level Metric Before After Improvement t-value sig.

Method
Cou 0.191 0.192 -0.52% 0.074 0.94

LCoh 0.933 0.888 4.82% 4.041 0.00

Class
Cou 0.230 0.486 -111.30% -4.641 0.00

LCoh 0.876 0.515 41.21% 11.653 0.00

Architecture
Cou 26.000 25.239 2.93% 3.244 0.00

Coh 0.103 0.115 11.65% -1.783 0.07

Coupling Cohesion

(a) Method Level

(b) Class Level

(c) Architecture Level

Figure 4. Trade-offs between Coupling and Cohesion

Applying the SRP improves the quality property (coupling or co-

hesion) that drives the refactoring, at a statistically significant lev-

el. Regarding trade-offs, at the architecture level we observed that

both quality properties are improved; whereas at the method and

class level trade-offs take place. Nevertheless, trade-offs at class

level are more impactful.

5 Discussion / Conclusions

In this paper we examined the effect of applying the SRP (at vari-

ous level of granularity) on software artifacts’ modularity. To

achieve this goal, we performed an industrial case study on two
software development companies, exploring 131 software artifacts.

Interpretation of the results. Based on the empirical evidence that

we have been able to deliver, we suggest that the application of

the Single Responsibility Principle is beneficial concerning the

modularity of the two industrial systems. Detailed findings are
presented and interpreted below:

 Indifferent impact of SRP regardless of the level of granularity.

The results of the study suggest that the effect of SRP-driven

refactorings on modularity is not statistically significant, when

not discriminating among the different levels of granularity.

This finding is expected in the sense that the level of magnitude

for each refactoring is different, and the effect on quality varies

across difference scales. Such findings are common in the soft-

ware engineering literature: e.g., Feitosa et al. [8], investigated

the impact of patterns on quality, and the results appeared to be

controversial without discriminating per pattern type.

 Effect of Refactorings on Modularity per level. The findings of

this study can be interpreted based on two data-sources: (a) the

frequency of cases in which the refactoring is beneficial, and

(b) the effect size—the absolute value of the change in the

modularity metric. Regarding the frequency of beneficial refac-

torings, we can observe that as the level of granularity of the re-

factorings increases (i.e., from method to architecture) the more

probable it is to obtain a benefit. However, the effect size is de-

creasing. This observation can be explained by the fact that re-

EASE’ 19, April 2019, Copenhagen, Denmark Ampatzoglou et al.

factorings at the architecture level are expected to be more im-

pactful [13]; however, according to Arvanitou et al. [3] the met-

rics at the architecture level are more stable (i.e., their values

are not easily fluctuating in successive releases). In other words,

applying the SRP at architecture artifacts has a more definite
impact, but it is more unlikely to sense the change by metrics.

 Refactoring Trade-offs. The findings regarding trade-offs sug-

gested that coupling and cohesion are inversely related proper-

ties, that are very sparse to optimize simultaneously. Therefore,

we have delivered evidence on the existence of trade-offs at

class level, and identified marginal trade-offs at method level.

The case study has not revealed any trade-offs at the architec-

ture level. This finding occurs due to the fact that while opti-

mizing coupling at the package level, the cohesion of the sys-

tem remains unaffected (neither positive nor negative impact).

A possible interpretation of this observation is that the calcula-

tion of the metric (pct. of intra-package dependencies) remains

unaffected by moving one class from one package to another,
because usually the number of classes within a package is large.

 Differences and Similarities among Artifacts. The findings of

the study suggest that the results at the method and the class

level are similar to each other, and substantially differ from

those at the architecture level. This is considered an expected

outcome in the sense that methods and classes are very close in

terms of granularity, compared to architecture artifacts which

are substantially larger and their investigation goes to a com-

pletely different scale. The results imply that allocation of in-

structions to methods and of methods to classes pertain to de-

sign, while the allocation of classes to packages pertains to ar-

chitecture, and the two processes differ substantially.

Implications to Researchers and Practitioners. The outcomes of

this work provides useful insights on the application of SRP. Re-

garding researchers interesting future work opportunities are:

 Need for more studies on the class and method level. The fact

that class- and method-level refactorings produce trade-offs

between coupling and cohesion, suggest that there is a need

for further improvement in these areas, which would lead to

the development of methodologies that treat the problem as a

multi-criteria one, since the optimization only in terms of co-

hesion might deteriorate coupling. Our results suggest that the

need is more intense at the level of classes. One promising

line of research is that of Search-Based Software Engineering

(SBSE) [10] which treats the allocation of code, methods, and
classes as a search-space optimization problem.

 Replication. The study needs to be replicated with other pro-

gramming languages, tools for refactoring identification and a

larger dataset. This would strengthen the generalizability of

the suggested results, which at this stage is limited to Java,

three tools, and two industrial projects. It would be equally in-

teresting to investigate trade-offs between the qualities affect-
ed by the application of SRP using a wider set of metrics.

Concerning practitioners, the findings of this study guide software

engineers in the possible problems that might occur unintentional-

ly, when refactoring a source code, based on tool suggestions,

without having an in-depth knowledge of the consequences of the

refactoring process. Therefore, all decisions shall be thoroughly

considered, by treating suggestions with caution and by paying

special attention to possible trade-offs between refactoring oppor-

tunities. In the context of continuous integration which gradually

becomes the norm, the observed trade-offs call for the use of ap-

propriate monitoring tools that will be able to pinpoint artifacts

which are adversely affected by an attempted refactoring. Howev-

er, the results suggest that refactorings at the architecture level

appear to be safer than those at the source code level, since they

are having a larger probability to increase one quality property,

without affecting the other.

ACKNOWLEDGMENTS

Work reported in this paper was financially supported by the ac-

tion "Strengthening Human Resources Research Potential via

Doctorate Research" of the Operational Program "Human Re-

sources Development Program, Education and Lifelong Learning,

2014-2020”, implemented from State Scholarship Foundation

(IKY) and co-financed by the European Social Fund and the

Greek public (National Strategic Reference Framework (NSRF)

2014–2020).

REFERENCES
[1] 25010-2011 ISO/IEC Systems and software engineering — Systems and Soft-

ware Quality Requirements and Evaluation (SQuaRE) — System and Software

Quality Models, 2011.

[2] 1061-1998: IEEE Standard for a Software Quality Metrics Methodology, IEEE

Standards, IEEE Computer Society, reaffirmed December 2009.

[3] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “Soft-

ware Metrics Fluctuation: A property for assisting the metrics selection pro-

cess”, Information and Software Technology, Elsevier, 72 (4), 2016.

[4] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A.Gkortzis, and P.

Avgeriou, “Identifying Extract Method Refactoring Opportunities Based on

Functional Relevance”, Transactions on Software Engineering, IEEE, 43, 2017.

[5] S. Charalampidou, E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, P.

Avgeriou, and I. Stamelos, “Structural Quality Metrics as Indicators of the

Long Method Bad Smell: An Empirical Study”, 44th Conference on Software

Engineering and Advanced Applications (SEAA’ 18), IEEE, August 2018.

[6] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented De-

sign”, Transactions on Software Engineering, IEEE, 20 (6), 1994.

[7] T. De Marco, Structured Analysis and System Specification. Yourdon, 1979.

[8] D. Feitosa, A. Ampatzoglou, P. Avgeriou, and E. Y. Nakagawa, “What can

violations of Good Practices tell about the Relationship between GoF patterns

and Run-Time Quality Attributes”, Information and Software Technology,

Elsevier, 2019.

[9] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Identification

and application of Extract Class refactorings in object-oriented systems”, Jour-

nal of Systems and Software, Elsevier, 85 (10), pp. 2241-2260, 2012.

[10] M. Harman, B. F. Jones, “Search-based software engineering”, Information and

Software Technology, Elsevier 43(14), pp. 833-839, 2001.

[11] B. Henderson-Sellers, “Object-Oriented Metrics Measures of Complexity”,

Prentice-Hall, 1996.

[12] W. Li, and S. Henry, "Object-oriented metrics that predict maintainability",

Journal of Systems and Software, Elsevier, 23 (2), pp. 111-122, 1993.

[13] Z Li, P Liang, P Avgeriou, N Guelfi, and A. Ampatzoglou, “An Empirical In-

vestigation of Modularity Metrics for Indicating Architectural Technical Debt”,

10th International Conference on the Quality of Software Architectures

(QoSA'14), ACM, 2014.

[14] R. C. Martin “Agile software development: principles, patterns and practices”,

Prentice Hall, 2003.

[15] P. Runeson, M. Höst, A. Rainer, and B. Regnell, “Case Study Research in

Software Engineering: Guidelines and Examples”, John Wiley and Sons, 2012.

[16] S. M. A. Shah, J. Dietrich, C. McCartin, “Making Smart Moves to Untangle

Programs”, 16th European Conference on Software Maintenance and Reengi-

neering (CSMR 2012), Szeged, Hungary, IEEE, 27–30 March 2012.

[17] P. Skiada, A. Ampatzoglou, E. M. Arvanitou, A. Chatzigeorgiou, and I. Sta-

melos “Exploring the Relationship between Software Modularity and Technical

Debt”, 44th Conference on Software Engineering and Advanced Applications

(SEAA’ 18), IEEE, August 2018.

[18] H. van Vliet, “Software Engineering: Principles and Practice”, John Wiley and

Sons, 2008.

