
Applying Machine Learning in Technical Debt
Management: Future Opportunities

and Challenges

Angeliki-Agathi Tsintzira, Elvira-Maria Arvanitou(B), Apostolos Ampatzoglou,
and Alexander Chatzigeorgiou

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
angeliki.agathi.tsintzira@gmail.com,

{e.arvanitou,a.ampatzoglou}@uom.edu.gr, achat@uom.gr

Abstract. Technical Debt Management (TDM) is a fast-growing field that in the
last years has attracted the attention of both academia and industry. TDM is a com-
plex process, in the sense that it relies on multiple and heterogeneous data sources
(e.g., source code, feature requests, bugs, developers’ activity, etc.), which cannot
be straightforwardly synthesized; leading the community to using mostly qualita-
tive empirical methods. However, empirical studies that involve expert judgement
are inherently biased, compared to automated or semi-automated approaches. To
overcome this limitation, the broader (not TDM) software engineering community
has started to employ machine learning (ML) technologies. Our goal is to investi-
gate the opportunity of applyingML technologies for TDM, through a Systematic
Literature Review (SLR) on the application of ML to software engineering prob-
lems (since ML applications on TDM are limited). Thus, we have performed a
broader scope study, i.e., on machine learning for software engineering, and then
synthesize the results so as to achieve our high-level goal (i.e., possible application
of ML in TDM). Therefore, we have conducted a literature review, by browsing
the research corpus published in five high-quality SE journals, with the goal of
cataloging: (a) the software engineering practices in which ML is used; (b) the
machine learning technologies that are used for solving them; and (c) the inter-
section of the two: developing a problem-solution mapping. The results are useful
to both academics and industry, since the former can identify possible gaps, and
interesting future research directions, whereas the latter can obtain benefits by
adopting ML technologies.

Keywords: Machine learning · Software quality · Literature review · Technical
Debt · Technical Debt Management

1 Introduction

Software quality is a multidisciplinary topic, in the sense that quality is about: (a) how
well software meets users’ needs, (b) how well software conforms to its specifications
from the developers’ point of view, (c) how well inherent, structural characteristics of

© Springer Nature Switzerland AG 2020
M. Shepperd et al. (Eds.): QUATIC 2020, CCIS 1266, pp. 53–67, 2020.
https://doi.org/10.1007/978-3-030-58793-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58793-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-58793-2_5


54 A.-A. Tsintzira et al.

the software are achieved from the product point of view, and (d) howmuch the end-user
is willing to pay for it from the value point of view [20]. In recent years, the structural
view of software quality is discussed through a metaphor, termed Technical Debt (TD),
which valuates poor software quality and the incurred maintainability problems [21].
Technical Debt Management (TDM) refers to all activities that can be performed for
guaranteeing the efficient handling of TD, e.g., identifying, measuring, prioritizing,
repaying, etc. A significant portion of TDM research is nowadays performed through
qualitative empirical studies. However, inherently qualitative studies are subject to bias,
in the sense that they heavily rely on expert judgement.

To alleviate such subjectivity, in traditional software quality research, researchers
are nowadays exploiting the large amount of data that are available through software
repositories. Such data enable researchers to perform large-scale quantitative studies, and
adopt modern techniques, such as machine learning to effectively carry out a specific
task without relying on explicit instructions or rules. For example, supervised machine
learning techniques have been used to buildmodels that can predict the number of defects
in software systems. Based on the aforementioned applicability of ML technologies,
we believe that there is an opportunity to apply ML in technical debt management.
Nevertheless, to the best of our knowledge in the current TDM state-of-the-art there are
limited studies that propose the use of ML explicitly for TDM (e.g., [6, 26]). Despite
the fact that for some constituents of TD, e.g., code smell detection or change proneness
assessment, some unsupervised or supervised ML approaches have been applied (e.g.,
[10]) these studies do not focus on the financial perspective of TD (e.g., economics of
code smells, refactorings, changes), but only on the technical view of the phenomenon.

The goal of this study is to investigate howML can be applied for TDM, by studying
existing literature. Since, the state-of-the-art lacks a substantial amount of studies, we
conducted a broader secondary study, i.e., on how machine learning approaches have
been used in software engineering (SE) practices, by conducting a systematic literature
review (SLR). Next, we interpret these findings in the context of TDM. We note that the
nature of this study is exploratory, in the sense that it aims at providing a panorama of
the intersection of the two fields (ML and SE), without going into details. For instance,
we do not aim to provide trend analysis, or explore the benefits obtained by the use of
ML (this would require an explanatory research setting). The reasons for this decision
is the fact that ML and SE are quite broad and a single study would not be able to cover
both goals: therefore we believe that an exploratory study is first required so as to setup
the research scene. Thus, the main outcome of this study is the provision of:

c1: The current status of research on combining ML and software engineering. In
particular, we investigate which software engineering practices are approached
through ML technologies.

c2: The opportunities of applying ML in TDM. To achieve this goal, we map software
engineering practices, in which ML has already been applied, to TDM activities
and concepts.

c3: The challenges for the adoption of ML in TDM research.

Section 2 presents related work (i.e., secondary studies on ML and SE) and back-
ground concepts of TDM. Next, Sect. 3 provides the literature review protocol, whereas,



Applying Machine Learning in Technical Debt Management 55

Sect. 4 presents the results of the study. Section 5 discusses the status, opportunities and
challenges of applyingML to TDM research, whereas Sect. 6 displays threats to validity.
Finally, Sect. 7 concludes the paper, and provides the implications to researchers and
software development industry.

2 Related Work and Background Information

Related Work. In the literature we have been able to identify only one secondary study
that summarizes the use of machine learning in software engineering. In particular,
Zhang et al. [28] have surveyed the literature to identify the most commonly used ML
technologies that havebeen applied in software engineering, andprovide someguidelines
on how to perform ML in software engineering. The main differences of this study
compared to ours are: (a) we use amore systematic approach for obtaining and analyzing
studies—i.e., a survey instead of a SLR; and (b) that our study is mapping the obtained
results in the context of TDM. In addition to that, we have identified secondary studies
that focus on specific software engineering practices, and underline the importance of
using ML technologies. More specifically, Sharma and Spinellis [25] and Azeem et al.
[5] performed secondary studies on code smell detection technologies and acknowledged
that many modern approaches employ machine learning algorithms. In a similar context
Heckman et al. [11] performed a SLR on approaches for providing bad design alerts,
through static analysis. Finally, various studies that de-livered overviews of cost/effort
estimation approaches emphasize the popularity of ML technologies for providing more
accurate estimates [13, 24, 27].

Background Information. The TD metaphor relies on two concepts borrowed from
economics: namely principal and interest. TD principal refers to the effort required to
eliminate all inefficiencies that are identified in the current version of the software [2].
Whereas, TD interest refers to the extra maintenance effort required to modify the soft-
ware, due to the presence of debt. For example, when an artifact needs to be maintained
for the introduction of a new feature, additional effort needs to be spent in resolving it,
due to inferior design quality [7]. Another concept related to TDM is interest probability.
In TD literature, instability (i.e., the susceptibility of an artifact to change) is considered
as a proxy of interest probability. In particular, artifacts of high instability are more
probable to accumulate interest, since it manifests only during maintenance activities
[4]. According to Li et al. [22], TDM can be decomposed to eight activities, synthesized
as follows to four categories: (a) Visualizing TD—TD representation, communication
that reflect the way that TD can be presented among stakeholders, and monitoring which
follows the evolution of TD; (b) Quantifying TD—TD identification (i.e., finding which
artifacts suffer from TD) and measurement (i.e., mapping the extent of the problem
to some numerical value); (c) Prioritizing TD—The process of TD prioritization ranks
identified TD items, according to certain predefined rules to support deciding which TD
items should be repaid first and which TD items can be tolerated until later releases;
and (d) Reducing TD—To reduce TD, two activities can be performed, namely TD
prevention and TD repayment.



56 A.-A. Tsintzira et al.

3 Study Design

This section presents the design of the systematic literature review. A protocol is a pre-
determined plan that describes research questions and how the study will be conducted.
In the next sub-sections, we present the decisions taken in each study design phase [19].

Research Objectives and Research Questions. The goal of this study can be
described as follows: “Analyze existing software engineering literature for the purpose
of understanding the application of machine learning technologies for solving software
engineering practices, with respect to: (a) the targeted software engineering practices;
(b) the proposed machine learning solutions; and (c) the mapping between them”. To
systematically explore the aforementioned goal, our study is built around three RQs:

RQ1: Which SE problems are solved with machine learning technologies?

RQ1.1: Which SE practices are targeted by ML approaches?
RQ1.2: Which quality attributes are benefited by the ML technologies?

RQ2: Which machine learning technologies have been used for approaching software
engineering problems?

RQ2.1: Which are the most common learning styles (i.e., unsupervised, supervised,
or semi-supervised) used in SE?
RQ2.2: Which are the most common ML algorithms used in SE?

RQ3: What is the mapping between SE problems and ML solutions?

Software engineering is a mature science field, which, however, strives for new solu-
tions to its well-known problems.With the rise of artificial intelligence and the increment
of the volume of data produced during software development, many researchers have
tried to investigate how artificial intelligence (specifically machine learning) can aid
in improving analysis and predictions problems. On the one hand, RQ1 tries to cata-
logue the software engineering practices that are approached through machine learning,
placing special emphasis on the practices that are attempted to be improved and the tar-
geted quality attributes (QA) of interest. On the other hand, RQ2 investigates machine
learning technologies that aim at satisfactorily solving software engineering problems,
compared to more traditional approaches. Special emphasis is placed on machine learn-
ing algorithms, learning styles, challenges, and success indicators. Finally, RQ3 attempts
to synthesize the findings of the previous research questions with the goal of mapping
solutions to practices in which machine learning is used.

Search Process. The search procedure aims at the identification of candidate primary
studies. The search plan involved automated search into five top-quality publication
venues. Narrowing the search space of the primary studies to specific top-quality venues
is acknowledged as a well-known practice [19] for broad studies, in the sense that it
guarantees the quality and relevance of primary studies [1]. Venue selection was based



Applying Machine Learning in Technical Debt Management 57

on the process applied byKaranatsiou et al. [15], in thewell-known series of bibliometric
studies for top-scholars and institutes in software engineering, being published for more
than two decades by JSS. The venue selection process is based on four criteria: (a) venues
classified as “Computer Software” by the Australian Research Council; (b) evaluation
higher than or equal to level “B” in the same schema; (c) on averagemore than 1 citation
per month per published article; and (d) general-scope journals, not restricted to phases
or activities. Next, based on the above, we retained the top-5 journals (excluding mag-
azines). In particular, we searched the articles identified in Information and Software
Technology, IEEE Transactions on Software Engineering, ACM Transactions on Soft-
ware Engineering and Methodology, Journal of Systems and Software, and Empirical
Software Engineering. In particular, in Fig. 1 we present an overview of the process
along with the number of studies at each step. Finally, we retrieved 90 primary studies.
The oldest publication is from 1995 and the newsiest from 2019: 82% of the publications
are from 2010 and on.

Fig. 1. Overview of search process

Since all publication venues are strictly on the software engineering field, the search
string needed to be focused only on ML technologies. As keywords for the search string
we have chosen to use simple and generic terms, which may yield as many meaningful
results as possible without any bias or preference to a certainmachine learningmethod or
technique. Thus, apart from the term “machine learning” per se, we used the most com-
mon learning styles, i.e., “supervised”, “unsupervised”, and “semi-supervised” learn-
ing [3]. The search string has been applied to the abstract and title of the manuscripts
of all selected venues, without any time constraints. The search has been conducted
automatically through the DLs of each venue. The final search string was:



58 A.-A. Tsintzira et al.

“machine learning” OR “supervised learning” OR “unsupervised learning” OR
“semi-supervised learning”

Articles Filtering Phase. The papers that were selected as candidate primary studies in
the review should be relevant to applications ofmachine learning in software engineering.
In line with Dybå and Dingsøyr [8], an important element of the systematic mapping
planning is to define the Inclusion Criteria (IC) and Exclusion Criteria (EC). A primary
study is included if it satisfies one or more ICs, and it is excluded if it satisfies one or
more ECs. The inclusion criteria of our systematic mapping are: IC1: The study applies
one or more ML technologies to a SE practice; and IC2: The study defines one or more
ways to evaluate quality with ML. The exclusion criteria of our systematic mapping are:
EC1: Study is an editorial, keynote, opinion, tutorial, workshop summary report, poster,
or panel; EC2: Study’s full text is not available; and EC3: Study mentions ML only in
introduction or related work section.

The identified articles went through these inclusion/exclusion criteria, by taking
into account the full text of the articles. Article inclusion and exclusion was performed
independently from the first and second author, and conflicts have been resolved through
discussion among the first three authors. During this process 24 conflicts have been
identified and resolved either through an unanimous inclusion or exclusion of the article
under consideration.

Quality Assessment. We omitted the step of quality assessment for two reasons: (a)
since all papers have been obtained from top-quality venues in software engineering,
their quality is (to some extent) ensured by the rigorous review process of the selected
venues; and (b)we have set no research questions on the quality of research in the domain
under study.

Data Collection. During the data collection phase, we collected data on a set of vari-
ables that describe each primary study. Similarly to article inclusion/exclusion, the data
collection process, has also been handled independently by the first author and the sec-
ond author. If both reviewers assigned the same value to one variable, this value would
be assigned to the variable without further discussion. Conflicts have been resolved at
two levels, first the two authors discussed internally, if no consensus was reached, then
the discussion was extended to the third author. First level conflicts have been found in
18 studies, whereas second level conflicts were resolved in 6 studies. For every study,
we have extracted the following data: [V1] Year; [V2] Title; [V3] Publication Venue;
[V4] SE practice (e.g., cost estimation, refactoring); [V5] Targeted QA (business [17]
or product qualities [14]); [V6] Learning Styles (i.e., un-, semi-, or supervised); [V7]
ML Algorithm; [V8] Challenges (challenges of applying ML to SE data); and [V9]
Evaluation Metrics (for ML).

Data Analysis. From the aforementioned variables [V1], [V2] and [V3] have been used
for documentation purposes only. The analysis strategy for the research questions is as
follows: to answer RQ1 and RQ2, we provide frequencies on variables [V4]–[V5] and



Applying Machine Learning in Technical Debt Management 59

[V6]-[V9], respectively. To answer RQ3, we perform crosstabulation of the same vari-
ables. We note that due to a lack of quantitative data, no hypothesis testing or statistical
analysis has been conducted.

4 Results

In this section we present the results of data analysis, organized by RQ. We note that the
synthesized view of the results (i.e., the transfer of the obtained results in TDM context)
is provided in Sect. 5.

Table 1. Software engineering problems approached with ML

SE practice # SE problems

Defect management 21 Fault proneness prediction and prioritization, Defect
prediction, Fault localization

Cost/Effort estimation 17 Development cost/effort estimation, Software maintenance
effort prediction, Maintenance type classification

Design-time QAs 14 Change proneness prediction, User interface design,
Software product and process quality assessment, Code
smells, Patterns and tactics detection, API instability
detection, Refactoring of test suites, Refactoring
recommendations

Project management 12 Bug report and change requests assignment
recommendations and prioritization, classification of
software bugs, Commit log recommendations, Code review
prioritization, Configuration management recommendation,
Development activity detection, Software upgrades
recommendation

Security 11 Malware, Malicious Code and Intrusion
Classification/Detection, Fault Injection Detection, Software
Vulnerabilities Detection

Requirements engineering 9 Functional requirements recommendations, Non-functional
requirements detection, Requirements prioritization,
Requirements assessment, Software SPL configurations
detection, Application domain classification

Run-time QAs 3 Performance Prediction, Energy Efficiency
Recommendations

Reuse 2 API usage recommendation, Code examples prioritization
for reuse

Program comprehension 2 Trace recovery, Reverse engineering



60 A.-A. Tsintzira et al.

Software Engineering Applications. In Table 1 we present the frequency of software
engineering practices that are approached withML. Through the analysis, we have iden-
tified 9 high-level (HL) software engineering practices. For each HL practice, we present
their frequency, and SE problems which are solved through ML. By acknowledging the
inherent relationship of TDM to maintainability, in Table 2, we provide an overview of
the QAs that are targeted in each application of ML. From the obtained results we can
observe that: (a) maintainability and its sub-characteristics (namely: testability, reusabil-
ity, modifiability and analyzability) are a common target for ML technologies—i.e., ML
technologies are relevant to TDM; and (b) business quality attributes are also targeted
by ML—rendering them relevant to TDM, in the sense that optimizing business QAs is
a main root for the accumulation of TD [18].

Table 2. Targeted quality attributes

HL QA Freq. Low Level QA

Maintainability 29 Testability, Reusability, Modifiability, Analyzability

Functional suitability 24 Functional correctness

Security 12 –

Business goals 10 Improve market position, Reduce cost of development

Performance efficiency 5 Resource utilization

Usability 1 –

Reliability 1 –

Machine Learning Technologies. To solve the aforementioned problems a variety of
ML algorithms and learning styles have been used. The dominant learning style is super-
vised learning algorithms (89%), followed by unsupervised (6%) and semi-supervised
learning (5%). In Table 3 we present the most frequently used algorithms (i.e., used in
more than 10 studies). Apart from the algorithm name and the frequency of its appear-
ance, we also provide the generic category in which it can be classified. We note in cases
when the authors have not specified a concrete algorithm (e.g., neural networks) the term
Generic has been used as the ML algorithm. To evaluate an ML solution there are many
performance measures. Performance measures are typically specialized to the class of
the problem: e.g., classification, regression, clustering etc. For problems with discrete
output such as classification/clustering, researchers use metrics that compare the actual
with the predicted values such as precision, recall, etc. For problems with continuous
output, such as regression they prefer metrics that capture error rate of predictions—e.g.,
MMRE, pred(0.25), etc.

Mapping of SE practices to ML Approaches. As a next step, having presented the
results originating from each discipline independently; we present a classification
schema, in which we map the most common HL software engineering practices to
the ML algorithms that have been used for solving them (see Fig. 2). To investigate if a



Applying Machine Learning in Technical Debt Management 61

Table 3. Machine learning algorithms

ML algorithm Freq. Generic category

Bayesian networks 35 Probabilistic analysis

ID3, C4.5, CART 33 Decision trees

SVM 31 Kernel methods

Neural networks 18 Biologically-inspired computation

Random forest 15 Ensemble learner

Ripper 14 Rule system

Regression 13 Statistical analysis

K-Means 13 Clustering

KNN 12 Nearest neighbor

relation between specific ML algorithms and software engineering practices exists, we
have performed a chi-square test. The results suggested that the two variables are associ-
ated (alpha< 0.01). Therefore, according to the findings of the SLR, specific algorithms
appear to be more appropriate for specific practices and vice-versa.

Fig. 2. Mapping of ML to software engineering practices



62 A.-A. Tsintzira et al.

5 TDM Through Machine Learning

In this sectionwe discuss themain findings of thiswork, i.e., the current status of research
on using ML for SE problems, the identified opportunities for the TD community, and
the challenges that might exist when applying ML in TDM research.

Current Status. We have observed that machine learning technologies have been
applied to resolve multiple and quite diverse research problems; however, some of them
appear to be prevalent. In particular, we observed that defect management, cost/effort
estimation, management of design-time quality attributes, recommendations for efficient
project management, and detection of security threats are the most common SE prac-
tices that have been investigated. We note that as management we refer to cases that we
predict (future state), assess, classify, or detect a phenomenon of interest. In terms of
quality attributes, the most relevant ones appeared to be the improvement of maintain-
ability and functional suitability (i.e., correctness), followed by security and business
quality attributes. In terms of ML algorithms, we suggest that Bayesian Networks, var-
ious Decision Trees, and SVM are the most frequently used ones. Finally, we identified
that Neural Network Analysis appears to be fitting for Cost/Effort Estimation practices,
Bayesian Networks for Defect and Project Management practices, and Random Forrest
algorithms appear to be appropriate forManaging Design-Time QAs. On the other hand,
Clustering and Decision Trees appear to be equally fitting for various SE practices.

TDM Opportunities. Based on the above results, it is evident that many of the studied
practices and QAs of interest are related to TDM, and therefore can drive to interesting
future research implications.On the one hand, regarding the results of Table 1 on themost
frequently studied SE practices, we can observe that the vast majority can be mapped
to TDM activities, as presented by Li et al. [22]. The only exceptions are Security and
Management of Run-time quality attributes, whose inefficiencies, by definition are not
categorized as TD. In particular, the following practices can be mapped to TD activities.
For each TDM activity, we present the SE practices to which they map, and next how
the SE practice can be used in the context of TDM research and practice.

• TD Identification deals with recognizing the software artifacts that suffer from TD
and the particular problems that they contain. Therefore, studies that focus on Code
Smells, Patterns and Tactics Detection (e.g., [9]) throughML approaches for Improv-
ing Design-Time Quality Attributes are considered as fitting for elaborate TD Identifi-
cation. Based on the above, researchers should try to improve the detection accuracy
of such approaches, whereas practitioners can use accompanying tools to identify
design hot-spots, i.e., parts of the system that yield quality improvements.

• TD Quantification: Monetization is a key concept in the TD metaphor: to perform
TDM, both principal and interest need to be quantified in some currency form. To this
end, Cost/Effort Estimationmethods (e.g., [10, 23]) are highly relevant. However, in
these studies, the authors donot discuss thefindings in the context ofTDquantification.
On the one hand, researchers are encouraged to introduce cost or effort estimation
approaches (e.g., based on past data) to predict the cost of applying refactoring (i.e.,
related to TD principal quantification) or to predict the cost of future maintenance



Applying Machine Learning in Technical Debt Management 63

effort (i.e., related to TD interest quantification). On the other hand, practitioners can
use existing (or novel) such approaches, for getting monetary estimations of their TD,
to improve the communication of poor software quality cost to higher non-technical
management.

• TD Prioritization: In the literature, three ways of TD prioritization have been pro-
posed, i.e., based on principal, interest, and interest probability. In that sense, studies
that focus on Change- [16] and Fault-proneness [29] assessment are relevant to TD
prioritization, since these concepts are closely related to interest probability: changes
and faults lead to maintenance activities that can accumulate interest. Based on this,
researchers can introduce algorithms that predict which software modules are more
prone to changes and faults; providing practitioners with tool support for identifying
modules that need special attention in their TDM. Finally, regarding cases in which
a monetization of TD interest is not of primary importance for prioritization, ranking
in terms of maintainability (i.e., a proxy of interest) is a satisfactory compromise of
accuracy and ease of use. Therefore, any method that is used for assessing or charac-
terizing the levels of QAs (e.g., maintainability [12]) can be useful for prioritization
based on interest.

• TD Repayment/Prevention: Regarding TD repayment, currently there are various
approaches that propose the identification of refactoring opportunities, or the order-
ing with which such refactorings shall be performed. Additionally, the adoption of
reuse strategies, as well as the creation of traces along artifacts are expected to be
beneficial for preventing the accumulation of new TD principal. Based on the above,
on the one hand, researchers are expected to propose ML-based refactoring iden-
tification strategies by optimizing TD principal and interest minimization; allowing
practitioners to performmore informed TD repayment. On the other hand, researchers
are encouraged to first explore the relation between specific practices (e.g., traceabil-
ity and reuse) to TD prevention, and if the relation is positive to provide mechanisms
to practitioners for applying them into their system.

On the other hand, by considering the targeted quality attributes (see Table 2), we
can also identify some connection to TDM. First, since the most frequently targeted
quality attribute is maintainability, we can easily assume that all technologies used to
improve maintainability are relevant to TD (see Sect. 2). Additionally, in many studies
ML approaches are used to apply practices that aid in terms of the improvement of the
market position of the product, or to reduce the development costs (e.g., by shrinking
product time-to-market). In general, the satisfaction of business goals is roots of accu-
mulating TD principal, e.g., bring the product to the market faster. Additionally, the
improvement of the market position of a product can be considered as a by-product of
TDM, especially in cases when combined through TD prioritization.

Challenges in Applying ML to TDM. As part of the analysis, we have identified spe-
cific challenges in applying ML to TDM practices. Among the most important ones we
acknowledge the following. First, there is a need of a substantial pre-processing in the
used datasets, so as to eliminate cases of imbalanced datasets, handling of duplicate val-
ues, multicollinearity of predictor variables, etc. Additionally, specifically in TDM it is



64 A.-A. Tsintzira et al.

expected to face many difficulties in creating a solid dataset, since the methods for quan-
tifying TD are highly diverse and no state-of-practice techniques exist. Furthermore, for
supervised learning algorithms labelling of training data (e.g. software modules) can be
challenging as no universal approach for measuring TD exists. In contrast to other fields
(e.g., cost estimation) there is a lack of benchmarks that can be used for training and
testing of algorithms (e.g., COCOMO or ISBSG). Furthermore, a common challenge
in applying ML in software engineering is the curse of dimensionality, in which the
researcher shall limit the variables that shall be fed into the model. This challenge is
also highly relevant to TDM, in the sense that TD is a multi-dimensional concept, whose
assessment requires the consideration of multiple aspects (e.g., code smell, improper
architectural decisions, etc.) but also people’s habits and employed processes. There-
fore, since the application of ML approaches requires a small subset of input variables
to obtain a time-efficient, accurate, and noiseless model, it is of paramount importance
to effectively perform data reduction.

6 Threats to Validity

In this section, we present the threats to validity that have been identified andmitigated as
part of the study design. The threats are organized based on the guidelines for identifying,
mitigating, and reporting threats to validity for secondary studies in software engineering
proposed by Ampatzoglou et al. [1].

Study Selection Validity. To guarantee that all studies relevant to the topic have been
identified, we systematically developed a search string, based on the types of existing
machine learning approaches. However, it is possible that we have missed studies that
mention in the title specific ML methods, such as deep learning, neutral networks, etc.
To guarantee the relevance to software engineering, we have selected five journals that
publish only SE articles. The full-texts of all articles were available through the used
Digital Library, and were all written in English. Since our goal was to target high quality
research only, we have excluded grey literature. To adequately filter articles, we have
predefined a list of inclusion/exclusion criteria, which were discussed among others and
piloted, with random screening, and authors voting.

Data Validity. Although we have limited our search to five publication venues, we have
retrieved 90 papers for inclusion in the study and data collection, which constitutes our
sample size as large enough for analysis. The selection of variables has been based on
the set of research questions, and therefore is adequate for answering them. Although
our results come from only five venues, we believe that there is no publication bias,
since the articles in the top journals come from various communities. The quality of the
primary studies is guaranteed by the quality of selected venues. To avoid data extraction
bias, more than one author has been involved in the process: one has double-checked the
results of the other, and agreement rates have been captured. In case of disagreement,
open discussions have been performed.



Applying Machine Learning in Technical Debt Management 65

Research Validity. To increase the reliability and replicability of the study, we involved
more than one researcher to all steps of the process, and all data have beenmade available.
Finally, we ensured that the correct research method has been used, i.e., an SLR since
a synthesis was required to achieve the high-level goal. However, we acknowledge that
the lack of direct related work has not allowed comparison of results; however, the
experience of the authors on TDM research allowed interpretation of results, increasing
generalisability.

7 Discussion/Conclusions

This study investigates how machine learning (ML) technologies can be applied in
TechnicalDebtManagement (TDM): to the best of our knowledge, there is no Systematic
Literature Review study that focuses on how ML is applied to TDM. To achieve this
goal, we have performed a broad literature review, i.e., on how ML technologies have
been applied to solve SE practices in general. The results of the analysis suggest that:
(a) the most common SE practices that have been approached through ML technologies
are defect management and cost/effort estimation; (b) the target of these technologies is
to improve both product (e.g., maintainability) and business (e.g., reduce development
time) qualities; and (c) that some ML technologies better map to specific SE practices;
however, others are so widespread that can be applicable to various cases.

The results of the study can provide multiple implications to researchers and soft-
ware development industries. Regarding software development industries, the relevance
of ML in resolving software engineering practices can highlight the potential benefits
of hiring personnel (e.g., data scientists) that are dedicated in data analysis and inter-
pretation. The outputs of the provided analysis can be proved useful in many aspects
of the development, as presented in Table 2. Additionally, software practitioners are
encouraged to incorporate into their daily processes tools (or research prototypes) that
are based on ML, and make use of the provided recommendations, or assessments (e.g.,
predictions, detections, etc.). On the other hand, we suggest TDM researchers to start
exploring the possibility of applying machine learning technologies in their research
endeavours. More specifically, we prompt them to migrate solutions from traditional
SE practices (e.g., cost estimation, smell detection, etc.) to the context of technical debt
management, since they are considered as very relevant. Additionally, the existence of
various and non-trivial challenges in the adoption of ML in TDM research, strength-
ens the aforementioned argumentation, in the sense that high-quality research outcomes
shall be produced to resolve them.

Acknowledgements. Work reported in this paper has received funding from theEuropeanUnion’s
Horizon 2020 research and innovation programme under grant agreement No 871177 (project:
SmartCLIDE).

References

1. Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., Chatzigeorgiou, A.: Identifying, cat-
egorizing and mitigating threats to validity in software engineering secondary studies. Inf.
Softw. Technol. 106(2), 201–230 (2019)



66 A.-A. Tsintzira et al.

2. Ampatzoglou, Ar., Ampatzoglou, Ap., Chatzigeorgiou, A., Avgeriou, P.: The financial aspect
of managing technical debt: a systematic literature review. Inf. Soft. Technol. 64(8), 52–73
(2015)

3. Aroussi, S., Mellouk, A.: Survey on machine learning-based QoE-QoS correlation mod-
els. In: International Conference on Computing, Management and Telecommunications
(ComManTel’), Da Nang, Vietnam, 27–29 April 2014

4. Arvanitou, E.M., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P.: Introducing a rip-
ple effect measure: a theoretical and empirical validation. In: International Symposium on
Empirical Software Engineering andMeasurement (ESEM2015). IEEE,China,October 2015

5. Azeem, M.I., Palomba, F., Shi, L., Wang, Q.: Machine learning techniques for code smell
detection: a systematic literature review and meta-analysis. Inf. Softw. Technol. 108(4), 115–
138 (2019)

6. Codabux, Z., Williams, B.J.: Technical debt prioritization using predictive analytics. In: 38th
International Conference on Software Engineering Companion (ICSE 2016). ACM (2016)

7. Chatzigeorgiou, A., Ampatzoglou, Ap., Ampatzoglou, Ar., Amanatidis, T.: Estimating the
breaking point for technical debt. In: 7th International Workshop on Managing Technical
Debt (MTD 2015), 2 October 2015, pp. 53–56. IEEE, Germany (2015)

8. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inf. Softw. Technol. 50(9–10), 833–859 (2008)

9. Arcelli Fontana, F., Mäntylä, M.V., Zanoni, M., Marino, A.: Comparing and experimenting
machine learning techniques for code smell detection. Empir. Softw. Eng. 21(3), 1143–1191
(2015). https://doi.org/10.1007/s10664-015-9378-4

10. Hamill,M., Goseva-Popstojanova, K.: Analyzing and predicting effort associatedwith finding
and fixing software faults. Inf. Softw. Technol. 87(7), 1–18 (2017)

11. Heckman, S., Williams, L.: A systematic literature review of actionable alert identification
techniques for automated static code analysis. Inf. Softw. Technol. 53(4), 363–387 (2011)

12. Herbold, S., Grabowski, J., Waack, S.: Calculation and optimisation of thresholds for sets
of software metrics. Empir. Softw. Eng. 16(6), 812–841 (2011). https://doi.org/10.1007/s10
664-011-9162-z

13. Idri, A., Hosni, M., Abran, A.: Systematic literature review of ensemble effort estimation. J.
Syst. Softw. 118(8), 151–175 (2016)

14. ISO/IEC 25010:2011, Systems and software engineering—Systems and software Quality
Requirements and Evaluation (SQuaRE)—System and software quality models, Geneva,
Switzerland (2011)

15. Karanatsiou, D., Li, Y., Arvanitou, E.M.,Misirlis, N.,Wong,W.E.: A bibliometric assessment
of software engineering scholars and institutions (2010–2017). J. Syst. Softw.147(1), 246–261
(2019)

16. Kaur, L., Mishra, A.: Cognitive complexity as a quantifier of version to version Java-based
source code change: an empirical probe. Inf. Softw. Technol. 102 (2019)

17. Kazman, R., Bass, L.: Categorizing Business Goals for Software Architectures. CMU/SEI-
2005-TR-021 (2005)

18. Kazman, R., et al.: A case study in locating the architectural roots of technical debt. In: 37th
International Conference on Software Engineering, 16–24 May 2015. IEEE, Florence (2015)

19. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S.: Systematic
literature reviews in software engineering – a systematic literature review. Inf. Softw. Technol.
51(1), 7–15 (2009)

20. Kitchenham, B., Pfleeger, S.L.: Software quality: the elusive target. IEEE Softw. 13(1), 12–21
(1996)

21. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and practice.
IEEE Softw. 29(6), 18–21 (2006)

https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1007/s10664-011-9162-z


Applying Machine Learning in Technical Debt Management 67

22. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its
management. J. Syst. Softw. 101(3), 193–220 (2015)

23. Mair, C., et al.: An investigation of machine learning based prediction systems. J. Syst. Softw.
53(1), 23–29 (2000)

24. Myrtveit, I., Stensrud, E., Shepperd, M.: Reliability and validity in comparative studies of
software prediction models. IEEE Trans. Softw. Eng. 31(5), 380–391 (2005)

25. Sharma, T., Spinellis, D.: A survey on software smells. J. Syst. Softw. 138(4), 158–173 (2018)
26. Skourletopoulos, G., Mavromoustakis, C., Bahsoon, R., Masotrakis, G., Pallis, E.: Predict-

ing and quantifying the technical debt in cloud software engineering. In: 19th International
Workshop on Computer-AidedModeling and Design of Communication Links and Networks
(CAMAD). IEEE Computer Society (2014)

27. Wen, J., Li, S., Lin, Z., Hu, Y., Huang, C.: Systematic literature review of machine learning
based software development effort estimation models. Inf. Softw. Technol. 54(1), 41–59
(2012)

28. Zhang,D., Tsai, J.J.P.:Machine learning and software engineering. In: 14th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2002), 4–6 November 2002 (2002)

29. Zhou, Y., Leung, H.: Empirical analysis of object-oriented design metrics for predicting high
and low severity faults. Trans. Softw. Eng. 32(10), 771–789 (2006)


	Applying Machine Learning in Technical Debt Management: Future Opportunities and Challenges
	1 Introduction
	2 Related Work and Background Information
	3 Study Design
	4 Results
	5 TDM Through Machine Learning
	6 Threats to Validity
	7 Discussion/Conclusions
	References




