
An empirical investigation on the impact of design pattern
application on computer game defects

Apostolos Ampatzoglou
Aristotle University of Thessaloniki

Department of Informatics
Thessaloniki, Greece

apamp@csd.auth.gr

Antonis Gortzis
Technological Education Institute

Department of Informatics
Thessaloniki, Greece
gkortz@it.teithe.gr

Apostolos Kritikos
Aristotle University of Thessaloniki

Department of Informatics
Thessaloniki, Greece

akritiko@csd.auth.gr

Fragkiskos Chatziasimidis
Aristotle University of Thessaloniki

Department of Informatics
Thessaloniki, Greece

fchatzia@csd.auth.gr

Elvira-Maria Arvanitou
Technological Education Institute

Department of Informatics
Thessaloniki, Greece

earvanit@it.teithe.gr

Ioannis Stamelos
Aristotle University of Thessaloniki

Department of Informatics
Thessaloniki, Greece

stamelos@csd.auth.gr

ABSTRACT
In this paper, we investigate the correlation between design
pattern application and software defects. In order to achieve this
goal we conducted an empirical study on java open source games.
More specifically, we examined several successful open source
games, identified the number of defects, the debugging rate and
performed design pattern related measurements. The results of the
study suggest that the overall number of design pattern instances
is not correlated to defect frequency and debugging effectiveness.
However, specific design patterns appear to have a significant
impact on the number of reported bugs and debugging rate.

Categories and Subject Descriptors
D.2.10 [Software Design]: Methodologies

General Terms
Design

Keywords
Design patterns; software defects; empirical study; computer
games

1. INTRODUCTION
In recent years, computer game design is a rapidly growing field
of computer science [18]. Until the first half of the 90’s, game
applications were written from scratch in Assembly language and
game developers did not aim at creating reusable code [19]. Later
on, the concept of code reuse was introduced as a major
breakthrough in game development because games started
becoming more complex and the process of their production was

much more time consuming. In [2], it is suggested that game
development companies have altered game lifecycle and their
project management process. More specifically, it is suggested
that due to the reduction of development time, games may be
delivered to market with bugs. For this reason, software patches
have become a common practice, which deals with debugging, i.e.
repairing errors. In order for this problem to be tackled,
frameworks and game engines have been produced. A framework
is a collection of components that can be widely reused and be
integrated with others components [20 and 22]. Usually
frameworks implement mechanisms that are parts of many games
(e.g. such as input management, file management (texture,
models, audio etc), 3D rendering etc.). Game engines are
programs that give developers the opportunity to design game
levels, handle player and oppositional behaviour, by handling
scripting languages and powerful GUIs. Consequently, if
frameworks and game engines are “well-structured”, they can be
maintained without marginal effort and be adapted so as to
support a variety of game genres.
Design patterns are generic, reusable solutions to frequent
problems in software design [6]. Patterns’ purpose is to capture
design knowledge in a form that can be easily reused. According
to [6], object-oriented design patterns usually present
relationships and interplay between classes or objects. In [6] the
authors imply that design pattern employment strengthens
software maintenance, flexibility and makes future adoptions, an
easy task. In contrast to that, many studies propose that design
pattern applications do not end up being beneficial as far as
software quality is concerned [11]. Currently there are two
approaches on the term of game design patterns, i.e. the use of
patterns on game mechanics and the use of object-oriented design
patterns in game programming.
In this paper, we examine the relationships among (1) design
pattern application, (2) game defect frequency and (3) game
debugging efficiency. In section 2, we present a review of the
current state of the research on game development and design
patterns. In section 3, we deal with the methodology of our study.
In section 4, we present our results and in section 5, we discuss
the research questions of our study. Finally, sections 6 and 7
supply a discussion about threats to validity, future research plans
and conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MindTrek’11, September 28-30, 2011, Tampere, Finland

Copyright 2011 ACM 978-1-4503-0816-8/11/09....$10.00

214

2. BACKGROUND INFORMATION
In this section, we present the results from a literature review
focused on the effect of object-oriented design patterns to
software quality attributes. In [11] the authors gathered and
presented information on every GoF design pattern and several
high level quality attributes, by conducting a survey on a group of
professional software engineers. Additionally, in [16 and 23],
professional software engineers participated in experiments in
order to evaluate how several design patterns like abstract factory,
composite, decorator, observer and visitor affect quality attributes
such as maintainability, understandability and stability. Although
the results show that design patterns are usually the best solution
for common design problems, their application must be in
accordance with the discretion of each software designer. In [7]
the authors discuss how the application of patterns affects the
system’s change proneness and report their conclusions. In [9] the
usability of abstract factory pattern in API design was investigated
and the results were validated by professional programmers who
participated in a controlled experiment.
Moreover, the maintainability and understandability of the visitor
pattern is discussed by the author of [10]. In [17], the authors
performed a case study on java open source software in order to
explore the reusability and the modularity of the GoF design
patterns. The results show that the reusability of code is adversely
affected by patterns such as bridge, flyweight, interpreter,
mediator, memento, singleton, state and visitor whereas patterns
such as singleton, bridge, flyweight, memento and state lag with
respect to modularity. In [8] the author discusses the stability of
four structural patterns by thoroughly examining and qualitatively
evaluating their class diagrams. In [24], the author investigates
how the application of patterns such as abstract factory, decorator,
observer, singleton and template method affects the defect
frequency of systems. The results indicate that the application of
abstract factory and template method decrease the system defect
frequency, while extended use of the observer pattern tends to
have adverse effects. Additionally the article examines whether
the combination of patterns affects the stability of a system. In [4],
authors utilize a formal approach in order to study the testability
of mediator, observer and visitor pattern. The maintainability of
the proxy design pattern is investigated in [13] through a case
study on open source software, whereas in [25] the author
investigates design patterns’ understandability and the negative
effects of their removal in industrial software.
Regarding computer game development, two studies [1 and 15]
attempted to investigate how the application of object-oriented
design patterns affects the quality of the derivative software. More
specifically, in [1], the authors analyzed existing systems and
examined how the application of patterns affects the game
structure and maintainability. The analysis indicated that using
patterns improves attributes such as complexity and coupling of
the game and cohesion of the code, although affecting the
project’s size by increasing its lines of code. In [15], authors
attempted to create a pattern-based game and suggested that using
design patterns is an optimal solution to achieve decoupling and
abstractions in a game. Authors in [14] describe how mechanisms
of virtual reality systems can be implemented in game
development. Finally, in [5] the authors report that in large project
development like computer games, difficulties appear in the
collaboration among staff with different expertise. The study
suggests that patterns should be used as a tool in order to deal
with these difficulties effectively and efficiently.

3. METHODOLOGY
According to the authors of [26], three major empirical
investigation approaches exist, surveys, case studies and
experiments. Considering the nature, the subject of our research
and the plethora of available open-source projects we believe that
a case study is the most suitable for our research needs.
In this section of the paper we describe the methodology of our
case study. The case study of our research was based on the
guidelines described in [12]. According to [12] the steps for
conducting a case study include:

(a) Define hypothesis
(b) Select projects
(c) Method of comparison selection
(d) Minimization of confounding factors
(e) Planning the case study
(f) Monitoring the case study and
(g) Analyze and report the results

The hypotheses, i.e. step (a), are defined in section 3.1. Steps (b)
and (d) which deal with project selection protocol and minimizing
confounding factors are presented in section 3.2, accompanied
with step (e). The methods used in analyzing the data, i.e. step (c),
is presented in section 3.3, step (f) as it is described in [12] is
discussed in section 6. Finally, concerning step (g), we report the
results on section 4 and discuss them in section 5.

3.1 Research Questions
In this section of the paper we state the research questions that are
investigated in our study.

RQ1: Is design pattern usage related to number of defects in
java open source games?
RQ2: Is design pattern usage related to successful debugging
activities in java open source games?

3.2 Case Study Plan
According to [3], in order to produce a solid methodology for an
empirical validation method, a study plan should be thoroughly
designed. In this case study the plan involved a five step
procedure:

1. identify a number of projects that fulfil certain selection
criteria in the domain of computer games

2. perform pattern detection for every selected project (the
detected patterns are Abstract Factory, Singleton,
Composite, Adapter, Observer, State, Strategy, Template
Method, Decorator, Prototype and Proxy).

3. perform bug tracking analysis for every selected project in
order to identify the number of bugs open and bugs fixed

4. tabulate results
5. analyze data with respect to the research questions

From the available OSS games we have selected projects that
fulfilled the following criteria:

1. software written in java, due to limitations of a pattern
detection tool [21]

2. software that provides binary code, due to limitations of
the pattern detection tool

3. software that had more than 10 reported bugs for each of
its releases

A possible confounding factor of this study is that both design
pattern use intensity and defect frequency are correlated to the
size of the software. So, larger programs are expected to have
more bugs and more pattern instances. Thus, results which

215

suggest that design pattern instances are positively correlated to
number of defects should be cautiously adopted. Additionally,
another factor that should be considered during the interpretation
of the results is the degree of pattern knowledge of open-source
game developers. It is believed that more experienced developers
are more probable to use more complex patterns and less
experienced developers to use rather simpler, such as State,
Strategy and Adapter. Additionally, we believe that more
experienced developers are more probable to write bug-free code.

3.3 Data Analysis Methods
The resulted dataset after design pattern detection and bug
tracking analysis included only numerical data. However, some
techniques that were employed during data analysis need
categorical or binary variables. Thus, certain data transformations
have taken place. On the completion of the pre-processing phase
each project was characterized by 64 variables:

1. name
2. version
3. defect frequency (bugs open)
4. bugs fixed
5. debugging efficiency (i.e. bugs fixed divided by bugs

opened)
6. number of classes
7. three variables for each pattern (number of pattern

instances, count of classes that participate in the pattern.
i.e. pattern participants, percentage of project classes that
participate in every instance of the pattern). That is 33
variables

8. two categorical variables for each pattern. That is 22
variables

9. overall pattern participants percentage. That is the
number of classes’ percent of project classes that are
employed in at least one pattern

10. two categorical variables for characterizing the project
according to the total number of pattern participating
classes.

The analysis phase of our study has employed statistical methods,
such as descriptive statistics, independent sample t-tests and
boxplots. The statistical analysis and the two-step clustering have
been performed with SPSS©.

4. RESULTS
Our dataset consists of ninety seven (97) java open source games
of various size, defect frequency, bug fixing efficiency and design
pattern use intensity. The descriptive measurements that outline
our dataset are presented in Table 1 (minimum, maximum, mean
value and standard deviation).

Table 1. Descriptive Statistics of Dataset

Variable min max mean std. dev
bugs opened 10 253 59,82 48,20
bugs fixed 3 228 59,76 44,49
bugs fixed / bugs opened 0.15 3.26 1.10 0.572
number of classes 37 1964 909,38 464,42
overall pattern participants 12.46% 50.51% 30.74% 6.99
factory instances 0 24 4,95 4,73
factory participants 0 136 19,44 28,14
factory participants in % 0,00% 6,95% 1,53% 1,63%

singleton instances 0 63 23,77 15,609
singleton participants 0 63 23,77 15,609
singleton participants in % 0,00% 21,62% 3,04% 3,27%
composite instances 0 7 1,16 1,320
composite participants 0 66 5,14 10,831
composite percentage in % 0,00% 3,36% 0,45% 0,69%
adapter instances 1 224 98,58 52,409
adapter participants 2 264 105,24 56,638
adapter percentage in % 3,77% 24,74% 11,95% 4,76%
observer instances 0 15 7,90 5,011
observer participants 0 152 52,78 53,828
observer percentage in % 0,00% 21,82% 5,22% 4,76%
State/Strategy instances 1 242 109,98 79,206
State/Strategy participants 2 550 163,86 114,709
State/Strategy percentage in % 4,12% 34,02% 16,70% 6,03%
template instances 0 27 11,68 5,878
template participants 0 155 75,82 53,869
template percentage in % 0,00% 16,37% 7,76% 4,84%
decorator instances 0 26 2,62 4,338
decorator participants 0 105 13,49 17,816
decorator percentage in % 0,00% 5,36% 1,28% 1,07%
prototype instances 0 411 14,07 62,375
prototype participants 0 464 28,54 79,063
prototype percentage in % 0,00% 24,33% 2,02% 4,22%
proxy instances 0 23 10,66 8,807
proxy participants 0 37 12,53 9,931
proxy percentage in % 0,00% 9,09% 1,48% 1,52%
Proxy2 instances 0 2 0,31 ,727
Proxy2 participants 0 4 0,62 1,454
Proxy2 percentage in % 0,00% 0,28 0,04% 0,10%

Additionally, we performed Pearson x2 tests, so as to investigate
the correlation between dependent variables (i.e. defect frequency
and debugging efficiency) and the numerical independent
variables (i.e. pattern instances, pattern participants in classes, and
percentage of project classes that participate in every instance of
the pattern). The statistically significant results are presented in
Table 2.
In order to visualize the impact of each independent variable on
the dependent variables we created boxplots on the most
important correlations. The boxplots are presented in Figures 1 –
11. In a boxplot the bold line inside the box represent the mean
value of the dependent variable (y-axis) in the corresponding
value of the grouping-indepentent variable (x-axis). Additionally,
the box covers 50% of the cases. The rest 50% of the cases are
divided into two equal groups (25% each) that are represented by
the lines starting from the top and the bottom of the box. Finally,
outliers, when they exist, are represented by circles outside the
boxes.

216

Table 2. Descriptive Statistics of Dataset

Variable test
bugs

opened
debugging
efficiency

Factory
instances

pearson correlation -,367** ,011
sig. (2-tailed) ,000 ,918

Factory
participants

pearson correlation -,270** -,037
sig. (2-tailed) ,008 ,721

Factory
percentage

pearson correlation -,293** ,039
sig. (2-tailed) ,004 ,705

Singleton
participation pct

pearson correlation -,052 -,217*
sig. (2-tailed) ,612 ,033

Composite
instances

pearson correlation -,398** ,045
sig. (2-tailed) ,000 ,663

Composite
participants

pearson correlation -,234* -,106
sig. (2-tailed) ,021 ,304

Composite
participation pct

pearson correlation -,203* -,059
sig. (2-tailed) ,046 ,565

Adapter
participants

pearson correlation ,276** -,109
sig. (2-tailed) ,006 ,289

Adapter
participation pct

pearson correlation ,531** -,224*
sig. (2-tailed) ,000 ,028

Observer
instances

pearson correlation -,397** ,185
sig. (2-tailed) ,000 ,070

Observer
participants

pearson correlation -,259* ,163
sig. (2-tailed) ,010 ,111

Observer
participation pct

pearson correlation -,338** ,219*
sig. (2-tailed) ,001 ,032

State/ Strategy
instances

pearson correlation -,335** ,173
sig. (2-tailed) ,001 ,091

Template
participants

pearson correlation ,253* ,014

sig. (2-tailed) ,012 ,891

Template
participation pct

pearson correlation ,511** -,014

sig. (2-tailed) ,000 ,892

Decorator
participation pct

pearson correlation ,191 -,212*
sig. (2-tailed) ,060 ,037

Prototype
participants

pearson correlation -,205* -,103
sig. (2-tailed) ,044 ,315

Prototype
participation pct

pearson correlation -,242* -,038
sig. (2-tailed) ,017 ,710

Proxy
instances

pearson correlation -,448** ,193
sig. (2-tailed) ,000 ,058

Proxy
participants

pearson correlation -,427** ,140
sig. (2-tailed) ,000 ,173

Proxy
participation pct

pearson correlation -,365** ,132
sig. (2-tailed) ,000 ,198

Figure 1. Boxplot on Defect Frequency and Factory
Pattern Usage

Figure 2. Boxplot on Debugging and Singleton
Pattern Usage

Figure 3. Boxplot on Defect Frequency and
Composite Pattern Usage

217

Figure 4. Boxplot on Defect Frequency and Adapter
Pattern Usage

Figure 7. Boxplot on Debugging and Observer
Pattern Usage

Figure 5. Boxplot on Debugging and Adapter
Pattern Usage

Figure 8. Boxplot on Defect Frequency and
Template Pattern Usage

Figure 6. Boxplot on Defect Frequency and
Observer Pattern Usage

Figure 9. Boxplot on Debugging and Decorator
Pattern Usage

218

Finally, in order to explore if there is a statistically significant
difference in the debugging efficiency among different pattern
application intensity we performed several independent sample t-
tests. The most important findings are reported in Table 3.

Table 3. Difference in Mean Values of Debugging Efficiency
among Patterns and their Application Intensity

Pattern
Application

Intensity diff sig

Factory
Partial Use – Average Use -0.441 0.02

Partial Use – Fair Use -0.366 0.05

Singleton

Limited Use – Fair Use -0.374 0.04

Limited Use – Extensive Use 0.294 0.00

Average Use – Fair Use -0.484 0.01

Average Use – Extensive Use 0.184 0.00

Adapter
Partial Use – Extensive Use 0.428 0.00

Fair Use – Extensive Use 0.403 0.01

Observer

Limited Use – Extensive Use -0.560 0.00

Average Use – Extensive Use -0.444 0.00

Fair Use – Extensive Use -0.412 0.05

Template
Method

Partial Use – Fair Use -0.405 0.05

Fair Use – Extensive Use 0.526 0.00

Decorator
Average Use – Fair Use 0.554 0.00

Average Use – Extensive Use 0.595 0.00

Prototype Limited Use – Average Use -0.365 0.01

Proxy
Partial Use – Average Use -0.262 0.03

Partial Use – Fair Use -0.121 0.01

5. DISCUSSION
This section of the paper discusses the findings of our study
concerning the research questions stated in section 3.1.

5.1 Design Patterns and Defect Frequency
The empirical results of our study indicate that design pattern
application frequency is related to a significant extent to the defect
frequency of computer games. The fact that the overall number of
pattern instances and the overall number of classes that participate
in patterns is not significantly correlated to the number of defects
(siginstances = 0.06 and sigparticipants = 0.35), suggests that there are
certain characteristics of specific design patterns, which influence
defect frequency.
More specifically, Abstract Factory, Singleton, Composite,
Observer, State, Strategy, Prototype and Proxy have been
indicated as patterns that are negatively correlated to defect
frequency. Thus, it appears that as the number of instances of such
patterns increases the number of open bugs in a project decreases.
On the other hand, Adapter and Template Method patterns are
positively correlated to defect frequency, i.e. as the number of
Adapter and Template increase the number of bugs appears to
increase as well. Although these results are statistically significant
they need further investigation, especially the results on Adapter
and Template Method, because they might be influenced from the
confounding factors of the study.
A possible explanation for the results on Composite, Observer and
Prototype patterns is that, since they are quite complex in their
structure, there is a probability to be applied by more experienced
developers, leading to less errors. On the other hand, the
simplicity of Factory, Singleton, Proxy, State and Strategy seems
to help developers avoid implementation defects.
On the contrary, the extended use of the Adapter pattern might
insert defects in the system, because of the code that is being
reused. Firstly, often the developers of the system are not familiar
with the piece of code that they are adapting and secondly, the
defects of the adapted code are added to the defects of the target
system. Similarly, Template Method might produce errors that
derive from the pattern’s structure, i.e. the deep inheritance tree it
involves.

5.2 Design Patterns and Bug Fixing
Similarly to the correlation of total number of open bugs, the bug
fixing rate is not correlated to the total number of pattern
instances and participants (siginstances = 0.86 and sigparticipants =
0.15).
However, there are some patterns that appear to have an effect on
bug fixing rate. More specifically, Singleton, Adapter, Observer
and Decorator appear to be statistically significantly correlated to
debugging rate.
Singleton pattern appear to be negatively correlated to debugging
efficiency, i.e. as the number of singleton instances increase, the
rate of bug fixing decreases. The use of a singleton pattern is

Figure 10. Boxplot on Defect Frequency and
Prototype Pattern Usage

Figure 11. Boxplot on Defect Frequency and Proxy
Pattern Usage

219

similar to global variables, in the sense that the instance returned
by the singleton pattern is accessible from many objects and
changes to singleton are expected to have large impact on the
system. Therefore, debugging a system that involves many
singleton pattern instances is expected to be more complicated
and hence difficult to manage.
Additionally, the extensive use of adapter pattern instances
appears to hamper bug fixing activities. The most obvious
explanation of this phenomenon is that the developers are not
fully aware of the code that they are reusing and therefore bug
fixing on such code fragments is harder. Moreover, the Decorator
pattern was found to be negatively correlated to debugging
efficiency. This result may occur because the call graph of a
decorator pattern structure is difficult to understand and maintain.
On the other hand, using the observer pattern enhances the
debugging procedure, since it provides a well structured way of
managing with interaction among application layers, such as user
interfaces, game controls and game logic. Such interactions are
expected to be quite complex without the existence of the pattern,
since the discrimination of layers increase system’s modularity.
Therefore, the higher the number of classes that participate in the
observer is, the higher the debugging efficiency.

6. THREATS TO VALIDITY
This section deals with presenting the threats to the validity of our
work. In any empirical study there are several threats to validity if
one attempts to generalize the results outside the scope of the
study. In our study, the results cannot be generalized to all 23
GoF patterns, but only to the 11 that we have examined.
Additionally, the results cannot be straightforwardly valid for
closed source software, for games written in programming
languages other than java and for open-source domains, other than
games.

7. CONCLUSIONS – FUTURE WORK
This work aimed at identifying possible correlations between the
application rate of design patterns, the defect frequency and the
debugging efficiency in open-source games. For this reason we
conducted a case study on 97 open-source java games. The results
of our study suggested that several design patterns are correlated
to the number of bugs that are reported in java open source games,
while others are correlated to the rate of bug fixing activities.
For instance, the Adapter pattern is indicated as a pattern that has
negative effect on both defect frequency and debugging
efficiency. A possible intuitive explanation of this result is that
adapter is most commonly used in code reuse activities. More
specifically, when reusing code a developer might not have a full
understanding of the code that he is reusing. Thus, he has
problems in fixing bugs in a piece of code that he is not fully
aware of. Simultaneously, possible bugs of reused parts are added
in open bugs of the target system. On the other hand, an increased
amount of Observer pattern instances lead to a decrease in the
bugs that are open in an open source game and accelerate the
debugging procedure. A possible explanation on this is that
developers who are using the Observer pattern are experienced on
design activities, and therefore less error prone. Additionally,
observer clearly demarcates the modules of the game and
therefore debugging activities are enhanced.
It is not clear however, whether the use of design patterns is the
root-cause of the defect detection and removal performance of
java open source game projects. It might be the case that the use
of design patterns is related to other critical project characteristics,

such as community level of experience, project vivacity etc. Such
issue is subject of further investigation.
Future research plans include the replication of the case study on
a greater variety of projects, across different domains. Such an
attempt will provide deeper understanding on whether the results
of this study are game related or not. Additionally, the type of
defects is going to be assessed and their severity is going to be
correlated to patterns as well.

8. REFERENCES
[1] A. Ampatzoglou and A. Chatzigeorgiou, "Evaluation of

object-oriented design patterns in game development",
Information and Software Technology, Elsevier, 49 (5),
pp. 445-454, May 2007

[2] A. Ampatzoglou, I. Stamelos, “Software engineering
research for computer games: A systematic review”
Information and Software Technology, 52 (9): 888-901
(2010)

[3] V.R. Basili, R.W. Selby, D.H. Hutchens, 1986, In IEEE
Transactions on Software Engineering,
“Experimentation in Software Engineering”, IEEE
Computer Society

[4] B. Baudry, Y. Le Traon, G. Sunye and J. M. Jezequel,
“Measuring and Improving Design Patterns Testability”,
Proceedings of the 9th International Symposium on
Software Metrics , IEEE, pp. 50, Sydney, Australia, 03-
05 September 2003

[5] S. Bjork and J. Holopainen, “Patterns in game design”,
Game Development Series, Charles River Media, 2004

[6] E. Gamma, R. Helms, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Professional, Reading, MA,
1995

[7] M. Gatrell, S. Counsell and T. Hall, “Design Patterns
and Change Proneness: A Replication Using Proprietary
C# Software”, Proceedings of the 2009 16th Working
Conference on Reverse Engineering, pp. 160-164, Lille,
France, 13-16 October 2009

[8] M. Elish, “Do Structural Design Patterns Promote
Design Stability?”, Proceedings of the 30th Annual
International Computer Software and Applications
Conference - Volume 01 (COMPSAC’06), IEEE, pp
215-220, Chicago, Illinois, 17-21 September 2006

[9] B. Ellis, J. Stylos and B. Myers, “The Factory Pattern in
API Design: A Usability Evaluation”, Proceedings of
the 29th international conference on Software
Engineering, IEEE, pp. 302-312, Minneapolis,
Minnesota, 20-26 May 2007

[10] S. Jeanmart, Y.G. Gueheneuc, H. Sahraoui and N.
Habra, “A Study of the Impact of the Visitor Design
Pattern on Program Comprehension and Maintenance
Tasks”, Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and
Measurement (ESEM '09), IEEE, p.p. 69-78, Lake
Buena Vista, Florida, 15-16 October 2009.

[11] F. Khomh and Y.G. Gueheneuc, “Do design patterns
impact software quality positively?”, IEEE Proceedings
of the 12th European Conference on Software

220

Maintenance and Reengineering (CSMR 2008), pp.274-
278, 1-4 April 2008, Athens, Greece

[12] B. Kitchenham, L. Pickard, S.L. Pfleeger, 1995, In
IEEE Software, “Case Studies for Method and Tool
Evaluation”.

[13] K. Kouskouras, A. Chatzigeorgiou and G. Stephanides,
“Facilitating software extension with design patterns
and Aspect-Oriented Programming”, Journal of Systems
and Software, Elsevier, 81 (10), pp 1725-1737, October
2008.

[14] A. McWilliams, T. Reicher, G. Klinker and B. Bruegge,
“Design Patterns for Augmented Reality Systems”,
Proceedings of the 2004 International Workshop
Exploring the Design and Engineering of Mixed Reality
Systems (MIXER’ 04), pp. 1-8, Funchal, Madeira, 13
January 2004.

[15] D. Z. Nguyen, S. B. Wong, "Design Patterns for
Games", Special Interest Group on Computer Science
Education (SIGCSE’02), Association of Computing
Machinery, pp. 126- 130, Cincinnati, Kentucky, 27
February – 2 March 2002.

[16] L. Prechelt, B. Unger-Lamprecht, W .F. Tichy, P.
Brossler and L. G. Votta, “A controlled experiment in
maintenance comparing design patterns to simpler
solutions”, IEEE Transactions on Software
Engineering, IEEE, 27 (3), pp 1134 -1144 , December
2001

[17] H. Rajan, S. M. kautz and W. Rowcliffe, “Concurrency
by Modularity: Design Patterns, a Case in Point”,
Proceedings of the ACM international conference on
Object oriented programming systems languages and
applications (OOPSLA ’10), ACM, p.p. 790-805, Reno,
Nevada, 17-21 October 2010.

[18] T.M. Rhyne, P. Doenges, B. Hibbard, H. Pfister, N.
Robins, “The impact of Computer Games on scientific
& information visualization: “if you can’t beat them,

join them” (panel)”, IEEE Visualization, Proceedings of
the conference on Visualization ’00, Salt Lake City,
Utah, USA, pages 519-521

[19] A. Rollings, D. Morris, “Game Architecture and Design:
A New Edition”, New Riders, Indianapolis, 2003.

[20] R. Rucker, “Software engineering and computer
games”, Addison Wesley, Essex, United Kingdom, 2003

[21] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides and
S.T. Halkidis, 2006. In IEEE Transaction on Software
Engineering, "Design Pattern Detection using Similarity
Scoring", IEEE Computer Society

[22] L. Valente, A. Conci, “Guff: A Game Development
Tool”, Digital version of the proceedings of XVIII
Brazilian Symposium on Computer Graphics and Image
Processing (SIBGRAPI), Natal, Brazil, 2005

[23] M. Vokáč, W. Tichy, D. I. K. Sjøberg , E. Arisholm and
M. Aldrin, “A Controlled Experiment Comparing the
Maintainability of Programs Designed with and without
Design Patterns - A Replication in a Real Programming
Environment”, Empirical Software Engineering,
Springer, 9(3), pp 149-195, September 2004

[24] M. Vokáč, “Defect Frequency and Design Patterns: An
Empirical Study of Industrial Code”, IEEE
Transactions on Software Engineering, IEEE, 30(12),
pp. 904-917, December 2004

[25] P. Wendorff, “Assessment of Design Patterns during
Software Reengineering: Lessons Learned from a Large
Commercial Project”, Proceedings of the Fifth
European Conference on Software Maintenance and
Reengineering, IEEE, pp. 77, Lisbon, Portugal , 14-16
March 2001

[26] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B.
Regnell, A. Wesslen, “Experimentation in Software
Engineering”, Kluwer Academic Publishers,
Boston/Dordrecht/ London, 1st edition, 2000

221

