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Context: Change impact analysis investigates the negative conse-
quence of system changes, i.e., the propagation of changes to other 
parts of the system (also known as the ripple effect). Identifying 
modules of the system that will be affected by the ripple effect is an 
important activity, before and after the application of any change.  
Goal: However, in the literature, there is only a limited set of studies 
that investigate the probability of a random change occurring in one 
class, to propagate to another. In this paper we discuss and evaluate 
the Ripple Effect Measure (in short REM), a metric that can be used 
to assess the aforementioned probability.  
Method: To evaluate the capacity of REM as an assessor of the prob-
ability of a class to change due to the ripple effect, we: (a) mathemat-
ically validate it against established metric properties (e.g., non-
negativity, monotonicity, etc.), proposed by Briand et al., and (b) 
empirically investigate its validity as an assessor of class proneness to 
the ripple effect, based on the 1061-1998 IEEE Standard on Software 
Measurement (e.g., correlation, predictive power, etc.). To apply the 
empirical validation process, we conducted a holistic multiple-case 
study on java open-source classes.  
Results: The results of REM validation (both mathematical and em-
pirical) suggest that REM is a theoretically sound measure that is the 
most valid assessor of the probability of a class to change due to the 
ripple effect, compared to other existing metrics. 

Keywords—ripple effect; software metrics; case study 

I.  INTRODUCTION  
Change impact analysis is related to assessing and identify-

ing the consequences, caused by modifications in one part of a 
system, on other parts of the same system, known as the ripple 
effect [20]. Studying and quantifying the ripple effect can pro-
vide benefits both before and after the application of a change:  

• before the actual application of changes: for program 
comprehension and effort estimation [10], [19]; and 

• after changes have been applied: for test case prioriti-
zation and the identification of relationships among 
software components [22]. 

Despite these benefits, to the best of our knowledge, there 
is only a limited set of metrics for assessing whether a class is 
prone to the ripple effect (i.e., its probability to change due to a 
modification in another class of the system). When exploring 
the proneness of a class to the ripple effect, there are two as-
pects that need to be assessed: (a) the probability of the source 
class to undergo changes, i.e., the event that will trigger the 
ripple effect phenomenon, and (b) the dependencies that will 

potentially propagate the change to dependent classes. Al-
though the former can only be estimated by analyzing the 
source code change history, the latter can be estimated by 
structural analysis, which will be the focus of this study. In 
order to come up with potential metrics for structurally assess-
ing class proneness to the ripple effect, we need to consider: a) 
the number of dependencies, and b) a parameter named propa-
gation factor, i.e., the probability of a change to propagate 
from one class to the other through a dependency [24]. The 
only type of metrics that might be able to assess these two as-
pects are coupling metrics, since class coupling is defined as 
the degree to which one class is connected to other classes of 
the system. However, the ability of coupling metrics to assess1 
if a class would change due to the ripple effect has not been 
empirically validated.  

By inspecting the definitions of the most popular coupling 
metrics (see Section VI), we observed that none of them can 
capture both the number of dependencies of a class and their 
propagation factor. Thus, in this paper we describe a structural 
coupling metric, namely Ripple Effect Measure (REM)2, and 
validate its capacity as an assessor of the probability of a class 
to change due to the ripple effect. The calculation of REM is 
based on the identification of efferent class dependencies, the 
quantification of the propagation factor for each one of them, 
and the aggregation from the dependency level to the class 
level. The validation process of REM is two-fold:  

• a theoretical validation aiming at mathematically prov-
ing that REM holds basic properties of software mea-
surement (e.g., non-negativity, normalization, etc.) [11]; 

• an empirical one, aiming at investigating the validity [1] 
of REM as an assessor of a class proneness to the ripple 
effect, by comparing it to existing coupling metrics.  

The rest of the paper is organized as follows: In Section II 
we discuss related work, whereas in Section III we present the 
REM and its calculation process. Section IV discusses the me-

                                                           
1 The term assess is used as defined in the 1061 IEEE Standard for 

Software Quality Metrics [1], i.e., as the ability to substitute, track 
the changes of, and predict the levels of a quality factor; and to dis-
criminate [1] between low and high values of the quality factor. 

2  REM has been introduced by Ampatzoglou et al. [5], as part of a 
case study on the instability of pattern-participating classes. In this 
paper, we discuss its foundations to enable the self-containment of 
this manuscript, but our main focus is on its validation. 
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tric validation processes that will be used during REM valida-
tion. Section V presents the outcome of the theoretical valida-
tion of REM. Section VI presents the design and the results of 
the empirical validation of REM. Section VII discusses the 
main findings of the validation; finally, Sections VIII and IX 
present threats to validity and conclude the paper, respectively. 

II. RELATED WORK 
In this section, we present studies that are related to the 

quantification of the ripple effect. As indirect related work, we 
present studies that attempt to quantify stability, i.e., the ability 
of the software to remain unchanged, regardless of the changes, 
occurring to other parts of the system. The connection between 
stability and ripple effect has been discussed from the earliest 
papers on ripple effect by Yau and Collofello [27], [28], [29]. 

Specifically, in the early ‘80s Yau and Collofello proposed 
some measures for design and source code stability. Both 
measures were considering the probability of an actual change 
to occur, the complexity of the changed module, the scope of 
the used variables, and the relationships between modules [28], 
[29]. The metrics proposed by Yau and Collofello are similar 
to REM, in the sense that they both take into account the de-
pendencies between modules, and the global variables that are 
part of the global interface of a module. The main points of 
differentiation of these metrics, compared to REM, is: (a) the 
inclusion of the probability of the change to occur in the class 
that emits the ripple effect – leading to a metric that is not 
structural, (b) the inclusion of a complexity metric that is used 
for quantifying the effort needed to apply the change – which is 
irrelevant to the probability of a change to propagate, but only 
related to the effort that will be needed to apply the change. 

In a more recent study (2007), Black, proposed an approach 
for calculating a complexity-weighted total variable definition 
propagation for a module, based on the model proposed by 
Yau and Collofello. The approach calculates complexity me-
trics, coupling metrics, and control flow metrics, and their 
combination provides the proposed ripple effect measure [9]. 
The main points of similarity and differentiation are the same, 
as those of Yau and Collofello. An empirical study conducted 
by Elsih and Rine [15], investigated the ability of existing me-
trics to assess the design stability of classes. The results sug-
gested that coupling metrics (CBO and RFC) are the optimum 
assessors of class stability, i.e., the reciprocal of the ripple ef-
fect. However, the used stability measure was not the actual 
one, but an estimation based on dependencies and attribute 
sharing. Finally, in a research effort on a different direction, by 
Alshayeb and Li [4], the authors propose a system design in-
stability measure that quantifies the actual changes that have 
been performed from one version of the system to the other. 
Nevertheless, this approach is not comparable to REM, in the 
sense that this study is an after-the-fact analysis, whereas REM 
is an estimator of the proneness of a class to the change due to 
the ripple effect. 

III. RIPPLE EFFECT MEASURE 
Dependency analysis is at the core of algorithms that ex-

plore the ripple effect caused by class change (see e.g., [9], 
[13], [14], [28], [29]), in the sense that changes propagate, 
across system classes, through their dependencies. Such change 

propagations (i.e., the most common ripple effect) [18], are the 
result of certain types of changes in one class (e.g., a change in 
the method signature–i.e., method name, types of parameters 
and return type–that is invoked inside another method) that 
potentially emit changes to other classes3. Such types of 
changes vary across different types of dependencies. According 
to van Vliet [25], there are three types of class dependencies, 
namely: generalization, containment, and association. Next, we 
describe the abovementioned types of dependencies, along with 
the types of changes that can propagate through them: 

• Generalization is used to represent “is-a” relationships. 
In a generalization, there are three possible reasons for 
change propagation: (a) super method invocation (use 
of super), (b) access of protected fields, and (c) override 
or implementation of abstract methods by the subclass. 

• Containment is used to represent “has-a” or “part-
whole” relationships. In a containment relationship, 
changes can propagate due to method calls of the con-
tainer class to the public interface of the containee class. 

• Association is used to represent relationships due to the 
declaration of a local variable inside a method, or due to 
the use of a class object as a parameter/return type in a 
method of another class. In an association relationship, 
changes can propagate due to method calls of a class to 
the public interface of another class. 

We note that the aforementioned way that changes are propa-
gated through class dependencies are described for designs that 
follow basic object-oriented design principles, i.e. encapsula-
tion (classes do not hold public attributes). In cases that classes 
hold public attributes, these public attributes are also consi-
dered as a reason for change propagation, in the sense that they 
belong to the class public interface.  

Let us consider the design of Fig. 1, in which two relations 
exists (A1 depends on A, and A1 depends on B). Are these rela-
tionships equally strong? Is it equally probable for a change 
occurring in A and a change occurring in B to ripple into A1? 
In order to answer such questions, a metric that quantifies the 
probability of a ripple effect between classes is necessary. To 
this end, we defined the Ripple Effect Measure (REM), a me-
tric that quantifies the probability of a random change occur-
ring in the public interface of a source class (A or B) to be 
propagated to a dependent class (A1) that uses it, by assuming 
that all elements of the source classes (i.e., attributes and me-
thods) have the same probability to change4. To calculate 
REM, we need to consider the count of: 

                                                           
3  We note that this work, does not handle conceptual dependencies 

among classes, as they would be enforced by class contracts. Our 
work, aims at providing a purely structural metric for assessing the 
probability of a class to change due to the ripple effect. 

4  As a static measure REM discards changes that occur in other parts 
of the source code (private parts or method bodies), in the sense 
that changes in the public interface affect only the class that 
changes (other classes do not have access to it) and co-change of 
method bodies can only be tracked by historical analysis (for more 
details on the differences between class change proneness and in-
stability see [5]). 
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• all members of the source classes (A or B) that are ac-
cessed by the dependent class (A1), which (if changed) 
will emit one or more changes to the dependent class 
(A1); and 

• all members of the public interface of source classes (A 
or B). 

The ratio of the two aforementioned counts is an estimate 
of the probability that a random change in the public interface 
of source class will occur in a member that will emit this 
change to the dependent class. In other words, as the number of 
the members of the source class that emit changes to another 
dependent class, approaches the total number of members that 
can change in the source class, it becomes more probable for 
changes to propagate from the source class to the dependent 
class. Thus, and by taking into account the three types of de-
pendencies and the way changes propagate across them, REM 
for a dependency (i.e., the propagation factor) between the de-
pendent and the source class, can be calculated as follows: 

           REM dependency  =    (1) 

NDMC:  Number of distinct method calls from the dependent  
class to the source class (plus, super class method 
invocations for the case of generalization) 

NOP: Number of polymorphic methods in the source class 
(valid only for generalization) 

NPrA:  Number of protected attributes in the source class 
(valid only for generalization or friend classes) 

NOM:  Number of methods in the source class  
NA:  Number of attributes in the source class 

 
Fig. 1. Coupling Intensity Example 

Based on the above, in the example of Fig. 1, there are three 
changes which would ripple from superclass A to subclass A1:  

• change in the signature of a1. Changing the signature 
of a1(), would lead to a compile error in the corres-
ponding invocation  (see body of method a3). 

• change in the signature of a2. Changing the signature 
of a2() would lead to a compile error in the place 
where a2() is overridden, since a2() is declared as 
abstract in the superclass.  

• change in the name of att2. Changing the name of 
attribute att2, would lead to a compile error in the 
body of a3. 

Thus, REM, for the dependency of A1 on A, can be calculated 
as follows: 

REM A1(A)
 5 =   =  = 0.75 

Similarly, there is only one change which would propagate 
from containee class (B) to the container class (A1), i.e. change 
in the signature of b1. Changing the signature of b1, would 
lead to a compile error in the corresponding invocation. We 
note that if any other method of B is changed, the change will 
not propagate to A1, as long as the method is not called in the 
implementation of A1 (in the example no other method of B is 
invoked from A1, except b1). Thus, REM, for the dependency 
of A1 on B, can be calculated as: 

REM A1(B) =   =  =  0.20 

Therefore, based on REM, for the example of Fig. 1, we can 
claim that a change occurring in A is more probable to propa-
gate in A1, than a change occurring in B.  

Until this point, the calculation of REM is performed at the 
class dependency level, i.e., from a class to one other class. In 
order to aggregate REM to a higher level of granularity, i.e., at 
class level, one should take into account the dependencies of a 
class on all other classes. In the example of Fig. 1, class A1 
will have to change if a change propagates from either class B 
or A or both. Therefore, for one class having several dependen-
cies, we propose the use of the joint probability of all events 
(i.e., change in any dependency) [2], for aggregating the score 
of REM from dependency to class level. For example, in the 
case of Fig. 1, the joint probability is calculated as follows: 

P(A∪B) = P(A) + P(B) – P(A)⋅ P(B)  

               = 0.75 + 0.20 – 075*0.20 = 0.8  

P(A∪B): REMA1(A, B)  
P(A): REMA1(A)  
P(B): REMA1(B) 

IV. VALIDATION PROCCESS 
According to Briand et al. [11], metric validation should be 

performed as a two-step process, i.e., providing a theoretical 
and empirical validation. The theoretical validation aims at 
mathematically proving that a metric satisfies certain criteria, 
whereas the empirical validation aims at investigating the ac-
curacy with which a specific metric quantifies the correspond-

                                                           
5 This refers to the REM of class A1, due to its dependency to A 

 
 

194

Authorized licensed use limited to: University of Macedonia. Downloaded on February 15,2022 at 11:51:04 UTC from IEEE Xplore.  Restrictions apply. 



ing quality factor. The validation of the REM metric will be 
performed using both types of validation.  Concerning the theo-
retical validation of REM, we will use the properties for coupl-
ing metrics proposed by Briand et al. [11]6. The used proper-
ties are:  

• Normalization and Non-Negativity: The metric score 
should have a pre-defined lower and upper bound, and 
not be negative [11]; 

• Null Value and Maximum Value: The metric score 
should be null or take the maximum value, only under 
very specific circumstances [11]; 

• Monotonicity: The metric score for a system S should 
be higher than the metric score for a system S’ (which is 
identical to S, except from one class, i.e., C and C’ re-
spectively), if the metric for class C is higher than the 
metric score for class C’ [11]; and  

• Merging of Classes: If a class C’ is the union of two 
classes C1 and C2,  then the metric score for C’ should 
be less or equal to the sum of the scores of C1 and C2 
[11]. For the special case of unconnected classes C1 and 
C2, the property suggests that the merged class should 
have a metric score that is equal to the sum of the indi-
vidual scores. 

 Regarding the empirical validation of REM we will use the 
properties described in the 1061 IEEE Standard for Software 
Quality Metrics [1], for comparing REM to existing coupling 
metrics (for details on these coupling metrics see Section VI). 
In this Standard, six metric validation criteria are introduced, 
accompanied by the statistical test that shall be used for eva-
luating every criterion, as follows:  

• Correlation assesses the association between a quality 
factor and the metric under study. The criterion is desir-
able, to ensure that the use of the metric can substitute 
the quality factor. The criterion is quantified by using a 
correlation coefficient [1].  

• Consistency assesses if the metric under study is con-
sistently correlated with the quality factor, by using 
their ranks. The criterion is desirable to ensure that the 
metric under study can accurately rank, by quality, a set 
of products or processes. The criterion is quantified by 
using the coefficient of rank correlation [1].  

• Tracking assesses if the metric under study is capable 
of tracking changes in product quality over their life-
cycle. The criterion is quantified by using coefficient of 
rank correlation for a set of project versions [1].  

• Predictability assesses the accuracy with which the 
metric under study is able to predict the levels of the 
quality factor. The criterion is quantified through the 
standard estimation error for a regression model using 
as predictor the metric under study [1].  

                                                           
6  We acknowledge the existence of various other metric properties 

(e.g., the ones proposed by Weyuker in 1998 [26]), we preferred to 
use the ones proposed by Briand et al., because they are coupling-
specific.  

• Discriminative Power assesses if the metric under 
study is capable of separating groups of high-quality 
and low-quality components. Although the criterion is 
proposed to be quantified through a contingency table 
(see [1]), the proposed quantification was not applicable 
for coupling metrics, because they cannot be recoded to 
categorical variables, without setting arbitrary thre-
sholds. Therefore, we use an equivalent test for assess-
ing discriminative power, i.e., independent t-test [16]. 

• Reliability assesses if the metric under study can fulfill 
all five aforementioned validation criteria, over multiple 
systems. This criterion can be assessed by replicating 
the previously discussed tests (for each of the aforemen-
tioned criteria) to various software systems [1]. 

V. THEORETICAL VALIDATION 
Based on the definition of REM (see Section III), we vali-

date it against all coupling properties in the next paragraphs. 

A. Normalization and Non-Negativity 
REM at both dependency and class levels is normalized and 

non-negative. Concerning normalization, the lower bound of 
REM is zero (since the lower bound of the numerator is zero – 
i.e., classes that do not call any method from other classes, and 
do not override polymorphic methods, and do not access any 
protected attributes of a superclass); whereas the upper bound 
of REM is 1 (since NDMC + NOP ≤ NOM and NPrA ≤ NA). 
Regarding non-negativity, REM is always assigned to a posi-
tive value, because it involves only additions and divisions of 
positives numbers. 

B. Null Value and Maximum Value 
REM at both dependency and class levels is defined for all 

possible cases of dependencies and classes, and has a specific 
maximum value. REM would not be defined (assigned a null 
value) only in the case that the denominator would be zero, 
i.e., classes depending on other classes with no attributes 
and no methods. However, such classes are not expected to 
exist, in the sense that they would not offer any functionality 
to the system. As mentioned in Section V.A, the maximum 
value of REM is 1. 

C. Monotonicity 
In the original definition of monotonicity, two levels of 

granularity are involved, i.e., the system level and the class 
level, where the values from class level are aggregated to sys-
tem level. In the case of REM, the two levels of granularity 
are different, i.e., the REM at dependency level, is aggregated 
to class level as discussed in Section III. Therefore, in order to 
explore the monotonicity of REM, we apply the definition, by 
mapping class to system (original definition) and dependency 
to class (original definition). 

For simplicity, assume a class C1 with two dependencies 
(D11 and D12), and a class C2 with one dependency having 
exactly the same REM as the first dependency of C1 and a 
second dependency that is different (D21 and D22, where 
REMD11=REMD21 and REMD12 > REMD22). Based on the 
aforementioned assumptions and the definition of monotonici-
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ty, in order for REM to be monotonic, we need to prove that 
REMC1(D11,D12) > REMC2(D21,D22). We mathematically prove the 
previous relationship, as follows: REM , ,                                                                                             1   1             

  ,  

which holds, based on the original assumption (REMD12 > 
REMD22).  Therefore, REM is a monotonic coupling metric. 
A proof of monotonicity for classes with n dependencies, 
could be provided, but it is omitted due to space limitations. 

D. Merging of Classes 
For similar reasons to monotonicity, we will argue that 

REM holds for the merging of classes property, through an 
example with two dependencies. Let class C1 be a class with 
one dependency (D1) and class C2 be another class with a dif-
ferent dependency (D2). The merged class C’ will have two 
dependencies (D1 and D2). In order for the ‘merging of classes’ 
property to hold for REM, we need to prove that REMC’(D1,D2) 
≤ REMC1(D1) + REMC2(D2). The mathematical proof of the pre-
vious relationship is as follows7: 

,                                                                                                            0,       

which holds, because both REMD1 and REMD2 are non-
negative numbers (based on the explanations provided in Sec-
tion V.A). Thus, REM is able to handle merging of classes as 
implied by the corresponding property. We note that the prop-
erty of the special case of merging unconnected classes is not 
satisfied by the REM, due to its probabilistic nature. 

VI. EMPIRICAL VALIDATION 
In order to empirically investigate the validity of REM to 

assess if a class will change due to the ripple effect, we per-
formed a case study on two open source projects. We compare 
REM to existing coupling metrics with respect to all the criteria 
described in Section IV [1]. The coupling metrics that have 
been used as control variables are:  

• Coupling Between Objects (CBO): Number of classes 
to which a class is coupled [12] 

• Response For a Class (RFC): Number of local me-
thods, plus the number of methods called by local me-
thods in the class [12]. 

                                                           
7  We note that since class C1 has only one dependency (i.e., D1), 

REMC1  = REMD1 

• Message Passing Coupling (MPC): Number of send 
statements defined in the class [21]. 

• Data Abstraction Coupling (DAC): Number of ab-
stract data types defined in the class [21]. 

• Measure of Aggregation (MOA): Number of data dec-
larations of a user defined type [8].  

In order to be as inclusive as possible, we selected metrics 
from three different metric suites (Chidamber and Kemerer 
[12], Li and Henry [21], and QMOOD [8]), which are well-
known and tool-supported. Also, the aforementioned list of 
metrics includes both code- and design-level coupling metrics. 

A. Case Study Design 
The case study has been designed and reported according to 

the guidelines of Runeson et al. [23]. Therefore, in this section 
we present: (a) the goal of the case study and the derived re-
search questions, (b) the description of cases and units of anal-
ysis, (c) the case selection criteria, (d) the data collection pro-
cedure, and the (e) data analysis process. 

Research Objectives and Research Questions: The aim of 
this case study, expressed through a GQM formulation, is: to 
analyze coupling metrics for the purpose of evaluation with 
respect to their validity to assess if a class will change due to 
the ripple effect, from the point of view of software engineers 
in the context of change impact analysis.  

Based on this goal we set two research questions: the first, 
on the first five validity criteria (i.e., correlation, consistency, 
tracking, predictability and discriminative power), in which no 
distinction between projects is necessary (i.e., all projects are 
handled as one dataset); and the second on reliability. Reliabili-
ty is investigated through a separate research question, because 
it entails performing the analysis for the aforementioned five 
validity criteria separately for each project (i.e., each project is 
considered as a different dataset, and those datasets are cross-
checked in order to assess metrics’ reliability). Therefore, we 
ask the following research questions: 

RQ1:  Can REM assess if a class will change due to the 
ripple effect, based on the criteria of the 1061-1998 
IEEE Std., compared to other existing metrics? 

RQ1.1:  How does REM compare to the other 
coupling metrics, w.r.t. correlation? 

RQ1.2:  How does REM compare to the other 
coupling metrics, w.r.t. consistency? 

RQ1.3:  How does REM compare to the other 
coupling metrics, w.r.t. tracking? 

RQ1.4:  How does REM compare to the other 
coupling metrics, w.r.t. their predictive 
power? 

RQ1.5:  How does REM compare to the other 
coupling metrics, w.r.t. their discriminative 
power? 

RQ2:  How does REM compare to the other coupling me-
trics, w.r.t. their reliability? 
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Case and Units of Analysis: This study is a holistic multiple-
case study, i.e. it studies multiple cases where each case is 
comprised of a single unit of analysis. Specifically the subjects 
of the study are open source projects, where classes are cases 
and at the same time units of analysis.  
Case Selection: As subjects for our study, we selected to use 
two open source projects, i.e., JFlex (versions 1.4 and earlier - 
in total 14 versions) and JMol (versions 0.9 and earlier - in 
total 10 versions). The main motivation for selecting these 
projects was the intention to reuse an existing dataset, which 
has been developed and used for a research effort with similar 
goals (see [24]). Specifically, Tsantalis et al. [24] have 
explored the specific versions of these projects, to identify 
classes that have changed from the projects’ previous versions. 
These changes have been manually inspected, so as to check 
whether they are due to reasons other than the ripple effect 
(main effect–referred as internal changes in the original 
publication [24]) or due to the ripple effect (referred as 
propagated changes in the original paper [24]). Consequently, 
we were able to reuse the extracted data that concerned 
changes due to ripple effect. All classes of these systems have 
been used as cases for this study. Therefore, our study was 
performed on 150 java classes. 

We clarify that for assessing correlation, consistency, pre-
dictability and discriminative power, we used only the last ver-
sion of JFlex and JMol as cases: according to the used IEEE 
standard, system evolution is not considered for these four va-
lidation criteria. We used the last versions of the projects, so as 
to examine the largest (in terms of lines of code and number of 
classes) versions of the systems. On the other hand, regarding 
tracking and reliability we used all examined versions of both 
systems.  

Data Collection: For each case (i.e., class), we primarily 
recorded ten variables, as follows: 

• Demographics: 3 variables (i.e., project, version, class 
name). 

• Evaluated metrics: 6 variables (i.e., REM, CBO, RFC, 
MPC, DAC, and MOA). These variables are going to be 
used as the independent variables for testing correlation, 
predictability and discriminative power. 

• Observed ripple effect: For any transition between two 
successive versions of a class, this variable indicates if a 
class has changed due to the ripple effect (value equals 
1), or whether it remained unaffected by the ripple ef-
fect (value equals 0). This variable is going to be used 
as the dependent variable in all tests. 

The coupling metrics have been calculated by using two tools:  

• REM has been calculated by modifying the tool of 
Tsantalis et al. [24]. The tool in its original version was 
created in order to calculate class change proneness, by 
using a constant value for the propagation factor. In the 
updated version [5], which is freely available for down-
load in the web8, REM has substituted the propagation 
factor, so as to increase the realism of the calculated 

                                                           
8  http://iwi.eldoc.ub.rug.nl/root/2014/ClassInstability/ 

change probability. From this tool, we use the REM cal-
culation, and not the complete instability calculation. 

• the rest of the coupling metrics, have been calculated 
using the Percerons Client tool9. Percerons is an online 
platform [7] created to facilitate empirical research in 
software engineering, by providing, among others, 
source code quality assessment [6]. The platform has 
been used for similar reasons in [3], [6] and [17]. 

Data Analysis: For investigating both research questions, we 
used the statistical analysis that is advocated by the 1061-1998 
IEEE Standard [1] (see Section IV), as summarized in Table I. 
We note that a coupling metric is expected to have a 
proportional relationship to the probability of a class to change 
due to the ripple effect: the larger the number of dependencies 
of a class and the stronger the dependencies, the more 
probable for this class to receive changes, from other classes.  

TABLE I.  MEASURE VALIDATION RESULTS 

Criterion Test    Variables 

Correlation Point bi-serial  
correlation  

Coupling Metrics 
Observed ripple effect  
(last version of the projects) 

Consistency Rank bi-serial   
correlation  

Coupling Metrics 
Observed ripple effect  
(last version of the projects) 

Tracking Rank bi-serial  
correlation 

Coupling Metrics 
Observed ripple effect 
(across all versions) 

Predictability Logistic 
Regression  

Independent: Coupling  Metrics 
Dependent:  Observed  ripple effect 
(last version of the projects) 

Discriminative 
Power 

Independent 
Sample t-test 

Testing: Coupling Metrics 
Grouping: Observed ripple effect 
(last version of the projects) 

Reliability all the aforementioned tests 
(seperately for each project –across all versions) 

For presenting the results on Correlation and Consistency, 
we use the correlation coefficients (coeff.) and the levels of 
statistical significance (sig.). The value of the correlation coef-
ficient denotes the degree to which the value of the observed 
ripple effect is in analogy to the value of the predictor. We 
note that since the dependent variable (i.e., Observed ripple 
effect) is binary, we used the point bi-serial correlation and 
rank bi-serial correlation for assessing correlation and consis-
tency, respectively. To represent the Tracking property of the 
evaluated metrics, we report on the consistency for multiple 
project versions, through the mean correlation coefficient and 
the percentage of versions, in which the correlation was statis-
tically significant. 

For reporting on Predictability, with a regression model, we 
present the level of statistical significance of the effect (sig.) of 
the independent variable on the dependent (how important is 
the predictor in the model), and the accuracy of the model (i.e., 
the total correctness value–percentage of correctly classified 

                                                           
9  http://www.percerons.com  
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cases). While investigating predictability, we produced a sepa-
rate logistic regression model for each predictor (univariate 
analysis), because our intention was not to investigate the cu-
mulative predictive power of all coupling metrics, but of each 
metric individually. Similarly to correlation/consistency, we 
performed a logistic regression, since the dependent variable is 
binary, therefore the classification threshold was set to 0.5. 

Additionally, for presenting the Discriminative Power of 
each metric, we investigate whether the two groups (actually 
propagated changes, and not propagated changes) differ with 
respect to the corresponding coupling metric score. For report-
ing on the independent sample t-tests, we present the mean 
difference (diff.) between the values of the testing variable of 
the compared groups, and the level of statistical significance 
(sig.). We note that in order for a metric to adequately discri-
minate groups of cases, the significance value should be less 
than 0.05.  

Finally, for reporting on the Reliability of coupling metrics 
while assessing if a class will change due to the ripple effect, 
we present the results of all the aforementioned tests, separate-
ly for the two explored OSS projects. The extent to which the 
results on the two projects are in agreement (i.e., Are they sta-
tistically significant for both? Is the same metric the most valid 
assessor of class proneness to the ripple effect for both 
projects?) represents the reliability of the considered metric. 

B. Results 
In this section, we present the results of the empirical vali-

dation of REM, organized by research question. We first 
present the outcome of comparing REM to the other coupling 
metrics, w.r.t. their correlation, consistency, tracking, predic-
tive and discriminative power as assessors of a class proneness 
to the ripple effect. Subsequently we present the results of 
comparing the reliability of REM to the reliability of the other 
coupling metrics. 

RQ1: Correlation, Consistency, Tracking, Predictability and  
Descriminative Power 
Table II presents the outcome of the statistical analysis related 
to RQ1. Each row of Table II corresponds to one validity crite-
rion, whereas each column to one metric. To enable the easy 
reading of Table II, we use visual aids to help the reader in 
focusing on the most important observations. Specifically, we 
denote statistically significant relationships at the 0.01 level 
with grey cell shading, and statistically significant relationships 
at the 0.05 level with light grey cell shading (when applicable). 
Finally, the optimal assessor of class proneness to the ripple 
effect, for each criterion, is denoted with bold fonts. 

To answer RQ1 we can suggest that REM and CBO are the 
only coupling metrics that can provide a statistically significant 
assessment (albeit weak) whether a class will change due to the 
ripple effect, w.r.t. the validity criteria described in IEEE 1061 
Standard. The results can be summarized as follows: 

• Correlation, Predictability and Discriminative Pow-
er: REM is the most valid metric while assessing if a 
class will change due to the ripple effect, followed by 
CBO. The results on REM validity are statistically sig-
nificant at the 1% level, whereas for CBO at the 5% 

level. The result for other metrics are not statistically 
significant. Concerning the discriminative power of me-
trics, we note that, although the absolute value of the 
difference offered by CBO is higher than the one of-
fered by REM, this difference is due to the range of val-
ues of the two metrics10. Therefore, we consider REM 
as the most valid assessor of class proneness to the rip-
ple effect, based on its statistical significance. 

• Consistency: REM is the most consistent assessor of 
class proneness to the ripple effect, followed by CBO 
and RFC. The results on the REM are statistically sig-
nificant at the 1% level, whereas for CBO and RFC at 
the 5% level.   

• Tracking: REM achieves the best results with respect 
to tracking class proneness to the ripple effect, followed 
by CBO. The results on REM are statistically significant 
for 26% of the examined cases.  

TABLE II.  MEASURE VALIDATION RESULTS 

 REM RFC MPC DAC CBO MOA 

C
or

re
la

tio
n coef. 0.25 0.11 0.06 0.07 0.18 0.13 

sig. 0.00 0.18 0.46 0.34 0.02 0.09 
C

on
si

st
en

cy
 

coef. 0.26 0.15 0.11 0.11 0.18 0.01 

sig. 0.00 0.05 0.16 0.18 0.02 0.97 

Tr
ac

ki
ng

 coef. 0.21 0.16 0.18 0.14 0.19 0.17 

pct. 26% 17% 21% 13% 21% 17% 

Pr
ed

ic
ta

bi
lit

y 

acc. 62.3% 54.3% 54.3% 55.0% 57.6% 55.0% 

sig. 0.01 0.99 0.92 0.99 0.03 0.67 

D
es

cr
im

in
at

iv
e 

Po
w

er
 diff -0.16 -5.21 -2.57 -0.02 -1.64 -0.08 

sig 0.01 0.49 0.93 0.27 0.02 0.68 

RQ2: Reliability  
Regarding RQ2, we performed all the aforementioned tests 
separately for each one of the analyzed OSS projects, and 
compared them. The results for each project are summarized in 
Tables III and IV. The notation used in Tables III and IV is the 
same as that of Table II. Therefore, the shading of the cell cor-
responds to the level of statistical significance, whereas the 
bold fonts indicate the most valid assessor of class proneness to 
the ripple effect concerning a certain criterion.  

                                                           
10  Range of REM is [0, 1], whereas range of CBO is [0, +∞). 
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TABLE III.  MEASURE VALIDATION RESULTS (JFLEX) 

 REM RFC MPC DAC11 CBO MOA 
C

or
re

la
tio

n coef. 0.37 0.24 0.00 N/A 0.27 0.18 

sig. 0.02 0.15 1.00 N/A 0.10 0.28 

C
on

si
st

en
cy

 

coef. 0.37 0.41 0.39 N/A 0.45 0.18 

sig. 0.02 0.01 0.02 N/A 0.00 0.30 

Tr
ac

ki
ng

 coef. 0.24 0.18 0.18 N/A 0.24 0.17 

pct. 28% 14% 21% N/A 28% 7% 

Pr
ed

ic
ta

bi
lit

y 

acc. 67.6% 58.9% 54.9% N/A 62.2% 64.9% 

sig 0.03 0.16 0.99 N/A 0.08 0.29 

D
es

cr
im

in
at

iv
e 

Po
w

er
 diff -0.26 -20.57 -0.02 N/A -2.74 -0.46 

sig 0.02 0.15 1.00 N/A 0.10 0.28 

TABLE IV.  MEASURE VALIDATION RESULTS (JMOL) 

  REM RFC MPC DAC CBO MOA 

C
or

re
la

tio
n coef. 0.24 0.09 0.08 0.07 0.20 0.15 

sig. 0.00 0.33 0.37 0.45 0.03 0.10 

C
on

si
st

en
cy

 

coef. 0.24 0.09 0.05 0.11 0.15 0.00 

sig. 0.01 0.36 0.56 0.25 0.11 0.98 

Tr
ac

ki
ng

 coef. 0.19 0.14 0.15 0.14 0.17 0.16 

pct. 22% 11% 11% 11% 22% 22% 

Pr
ed

ic
ta

bi
lit

y 

acc. 60.5% 45.0% 45.0% 51.8% 52.9% 50.9% 

sig 0.03 0.97 0.87 0.98 0.08 0.87 

D
es

cr
im

in
at

iv
e 

Po
w

er
 diff -0.13 -0.38 -5.12 -0.02 -1.40 0.03 

sig 0.04 0.97 0.87 0.31 0.07 0.87 

                                                           
11  We were unable to calculate the validity of DAC as an assessor 

of class proneness to the ripple effect in JFlex, due to the limited 
use of inheritance in the project: no class had any data abstraction 
coupling. 

From Tables III and IV, we can observe that REM is the 
only coupling metric that produces reliable results for all re-
quired tests (i.e., similar between the two software systems). 
Specifically, REM is the optimal assessor of class proneness to 
the ripple effect regarding correlation, tracking, predictive and 
discriminative power, for both projects. Concerning consisten-
cy, REM is the most valid assessor of class proneness to the 
ripple effect for JMol, but the 4th for JFlex. However, for both 
projects, the results on the consistency of REM are statistically 
significant, and therefore reliable. An interesting result that we 
can observe from Tables III and IV is that CBO, i.e., the 
second most valid assessor of class proneness to the ripple 
effect according to Table II, suffers from reliability issues. 
Specifically, CBO is not reliable w.r.t any criterion, since it 
provides statistically significant results, at most, only for one 
out of the two projects (i.e., consistency and tracking for JFlex 
and correlation for JMol). 

VII. DISCUSSION 

In this section, the outcomes of this study are discussed 
from two different perspectives. First, we provide possible in-
terpretations of the obtained results; and second, we present 
possible implications to researchers and practitioners. 

Interpretation of the Results: The results of this study suggest 
that REM is a theoretically sound coupling metric and that 
exceeds all other metrics on the considered validation criteria, 
followed by CBO. REM outperforms other coupling metrics, 
mostly because it is specifically designed for assessing the 
probability of a class to change due to the ripple effect, and 
not coupling in general. To this end, REM has been designed 
so as to resolve the limitations of the other metrics and 
combine their strengths, as follows: 

• REM takes into account the number of dependencies, 
similarly to CBO, DAC, and MOA.  However, none of 
the aforementioned metrics considers the strength of 
these dependencies. 

• REM is a normalized measure that is able to quantify 
the strength of dependencies. For similar metrics, 
which quantify the strength of coupling and at the same 
time are proportional to the number of dependencies, 
i.e. RFC and MPC, it is not clear to what extent their 
value is related to the two components they mix. For 
example, MPC is equal for two classes, for which the 
first has two dependencies and every dependency is 
used three times, and the second has six dependencies 
and each dependency is used once.  

• REM is the only metric that takes into account the 
changes that can be propagated by using protected 
attributes, either through hierarchies or friend methods. 

These characteristics of REM make it the most valid assessor 
of the probability of a class to change due to the ripple effect, 
as demonstrated by the obtained empirical evidence. Also, by 
comparing the rest of the coupling metrics, we can observe that 
CBO is the 2nd best assessor of class proneness to the ripple 
effect. This implies that the number of efferent couplings is 
indeed an important parameter, when exploring the ripple ef-
fect. The fact that CBO is a better assessor than MOA and 
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DAC can be explained, as they capture only a small portion of 
efferent couplings (i.e., number of aggregations and number of 
used abstract types respectively). Finally, by contrasting RFC 
to MPC, we can conclude that the distinct counting of called 
methods offered by RFC make it a better assessor than MPC, 
because regardless of how many times a method is called, a 
change will be propagated even with only one method call. 

Additionally, although REM is the optimal assessor of a 
class proneness to the ripple effect, the results suggest that the 
strength of the correlation between them (see Table II) can only 
be considered as weak or moderate at best. This is an expected 
outcome, since in this study REM is validated against the ac-
tual class changes due to the ripple effect. However, as ex-
plained in Section I, the actual probability of change in any 
class, depends not only on the probability of changes to propa-
gate, but also on the probability of changes to occur in the first 
place. Nevertheless, the quantification of the actual probability 
of change in a class, might demand the processing of data that 
are not always available (e.g., class change history, or subjec-
tive identification of design hot-spots, etc.). In such cases, the 
interested software engineer, would be forced to use a structur-
al metric, among which REM is the optimal predictor of class 
proneness to the ripple effect, based on the results of this case 
study.  

Implications to Researchers and Practitioners: By taking into 
account the aforementioned results and discussions, we can 
provide various implications for researchers and practitioners. 
Specifically, we: 

• Encourage practitioners to use REM in their change 
impact analysis activities, in the sense that REM is the 
optimal available assessor of the probability of a class to 
change due to the ripple effect. We expect that tool sup-
port that automates the calculation process (see Section 
VI.A) will ease its adoption. However, the applicability 
of REM in practice is still in need of further investiga-
tion. 

• Encourage researchers to investigate options for im-
proving the effect size of the metric. For example, by 
incorporating the actual change proneness of classes in 
the calculation of REM, so as to increase the validity of 
the proposed metric. Specifically, towards this direction, 
we plan to replicate this study, by using the tool pre-
sented in [5], feed it with historical data on class change 
proneness and use all the considered metrics as change 
propagation factors, and observe: (a) if the results in the 
fitness of metrics as assessors of class proneness to the 
ripple effect remain the same, and (b) if the validity of 
the calculated metrics increases (e.g., strength of corre-
lation). 

• Encourage researchers to investigate the possibility of 
assigning weights to the various axes through which a 
class can receive changes (i.e., protected attributes, 
called methods, and overridden methods) by an empiri-
cal study on class change history, and observe if such a 
change can increase the validity of REM. 

• Encourage researchers to transform REM so as to fit 
architecture evaluation purposes, i.e., assess the proba-

bility of changes to propagate across components. We 
believe that such a transformation would be of great in-
terest for the architecture community, which shows in-
creased interest in metrics. Also, such an attempt would 
increase the benefits of practitioners, in the sense that 
change impact analysis could scale into larger systems. 

• Encourage researchers to use combinations of coupling 
metrics to explore the possibility of increasing power of 
metric for predicting the ripple effect. 

VIII. THREATS TO VALIDITY 

In this section we present the threats to the validity of our 
case study12. In this case study, we aimed at exploring if certain 
coupling metrics are valid assessors of class proneness to the 
ripple effect. Therefore, possible threats to construct validity 
[23] deal with the way coupling and the ripple effect are quan-
tified, including both rationale and tool support. On the one 
hand, the rationale on how the coupling metrics are calculated 
is not a threat, since their definition is clear and well docu-
mented, whereas the used tools have been thoroughly tested, 
before deployment. On the other hand, in order to assess the 
probability of a class to change due to the ripple effect, we used 
the number of actually propagated changes, which is exactly 
how the ripple effect should be calculated. The calculation of 
actually propagated changes, has been reused from an already 
published study [24], and their results have been manually va-
lidated by the first author. 

Additionally, in order to ensure the reliability [23] of this 
study, we: (a) thoroughly documented the study design in this 
document (see Section VI.A), so as to make the study 
replicable, and (b) all steps of data collection and data analysis 
have been performed by two researchers in order to ensure the 
validity of the process. Furthermore, concerning the external 
validity [23] of our results, we have identified two possible 
threats:  

• we investigated only two OSS projects. The low number 
of subjects is a threat to generalization, in the sense that 
results on these two projects cannot be generalized to 
the complete OSS projects population. However, since 
the units of analysis for this study are classes and not 
projects, we believe that this threat is mitigated. The on-
ly real threat concerns the reliability criterion, as it 
compares results from different projects and we only 
compare two OSS projects against each other. For this 
specific criterion, further investigation is required. 

• we investigated project only written in Java. Due to tool 
limitations, we could only analyze projects written in 
Java. Therefore, the results cannot be generalized in 
other languages, e.g., C++. This threat becomes, even 
more important, because C++ projects are expected to 
also make of use the friend operator, which changes 
the scope of class attributes. 

 

                                                           
12  The mathematical results presented in Section V, by definition, 

cannot suffer from threats to validity. 
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IX. CONCLUSIONS 

In this study, we presented and validated a new coupling 
metric, named Ripple Effect Measure (REM), which can be 
used for assessing a class proneness to the ripple effect. The 
metric is defined at dependency level by calculating the portion 
of the accessible interface of a class that is used by other 
classes. After calculating REM for all dependencies, REM can 
be aggregated to class level, by employing simple probability 
theory. The validation of REM has been performed in a two-
step process: first, we theoretically validated it against well-
known coupling metric properties [11]; and second, we empiri-
cally validated against the metric validation criteria defined in 
the 1061-1998 IEEE Standard for a Software Quality Metrics 
[1]. To empirically investigate the validity of REM as an asses-
sor of class proneness to the ripple effect, we performed a ho-
listic multiple-case study on over 150 OSS project classes.  

The results of the theoretical validation suggested that REM 
is mathematically sound, in the sense that all coupling metric 
properties can be proven, based on its definition. Additionally, 
the results of our case study suggested that REM excels as an 
assessor of a class proneness to the ripple effect metric com-
pared to a variety of well-known coupling metrics. Based on 
these results, implications for researchers and practitioners 
have been provided. 
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