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ABSTRACT 

Change proneness is a quality characteristic of software artifacts 

that represents their probability to change in the future due to: (a) 

evolving requirements, (b) bug fixing, or (c) ripple effects. In the 

literature, change proneness has been associated with many nega-

tive consequences along software evolution. For example, arti-

facts that are change-prone tend to produce more defects, and 

accumulate more technical debt. Therefore, identifying and moni-

toring modules of the system that are change-prone is of para-

mount importance. Assessing change proneness requires infor-

mation from two sources: (a) the history of changes in the artifact 

as a proxy of how frequently the artifact itself is changing, and (b) 

the source code structure that affects the probability of a change 

being propagated among artifacts. In this paper, we propose a 

method for assessing the change proneness of classes based on the 

two aforementioned information sources. To validate the pro-

posed approach, we performed a case study on five open-source 

projects. Specifically, we compared the accuracy of the proposed 

approach to the use of other software metrics and change history 

to assess change proneness, based on the 1061-1998 IEEE Stand-

ard on Software Measurement. The results of the case study sug-

gest that the proposed method is the most accurate and reliable 

assessor of change proneness. The high accuracy of the method 

suggests that the method and accompanying tool can effectively 

aid practitioners during software maintenance and evolution.  

CCS CONCEPTS 

• Software and its engineering → Software creation and man-

agement → {Software development techniques → Object-

oriented development, Software verification and validation → 
Empirical software validation} 

KEYWORDS 

Change proneness; Software quality; Metrics; Case study 

1. INTRODUCTION 

Change proneness is the susceptibility of software artifacts to 

change, without differentiating between types of change (e.g., 

new requirements, debugging activities, and changes that propa-

gate from changes in other classes) [17]. In the literature, change 

proneness has been extensively studied as a software quality 

characteristic from various perspectives. We present three such 

perspectives as examples of using change proneness. First, in the 

software maintenance and evolution literature, change prone-

ness has been associated with many undesired consequences. For 

instance, a class that changes very frequently is more error/defect-

prone and is more difficult to maintain along software evolution 

[16]. Second, in the technical debt literature, change proneness is 

considered as a factor in calculating interest probability. In other 

words, it is claimed that change-prone classes are more probable 

to accumulate interest than less change-prone ones, since interest 

manifests only during maintenance activities [5]. Third, in the 

design pattern literature, change proneness has been examined as 

an indicator for the necessity of applying patterns. More specifi-

cally, the pattern community claims that placing a pattern in a 

design spot that is not changing frequently (i.e., within a group of 

classes that are not change-prone) might lead to unnecessary de-

sign complexity (i.e., a simpler solution would more preferable 

than using the pattern) [9]. 

Based on the above, it becomes evident that change proneness is a 

useful indicator for various use cases. Therefore, it is of para-

mount importance to measure change proneness of software sys-

tems, as accurately as possible, and further monitor it, since it 

changes over time. According to a recent mapping study on soft-

ware design-time quality attributes, change proneness is assessed 

either by considering: (a) the history of changes of artifacts, 

which can be captured by measures such as: frequency of changes 

along evolution, and extent of change (such as number of lines 

added / deleted / modified, etc.); or (b) the structural characteris-

tics of software, such as coupling, size and complexity [7]. How-

ever, existing methods in the state-of-the-art are not very accu-

rate. A possible explanation for their low accuracy is the fact that 
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they do not combine the two aforementioned information sources. 

To improve the accuracy of assessing change proneness, we pro-

pose investigating: (a) the probability of an artifact per se to un-

dergo changes, which needs to be considered as one source of 

change (e.g., a modification of the requirements, a bug fixing 

request, etc.), and (b) the dependencies to other artifacts as an 

additional one, in the sense that changes can be propagated from 

other artifacts, as well. The former aspect can be estimated by 

analyzing the source code change history, whereas the latter can 

be estimated by structural analysis.  

In this study, we propose a method for assessing change prone-

ness of software artifacts, based on the two aforementioned as-

pects. In particular, we build upon an existing method introduced 

by the third author [24] and enhance it with additional parameters. 

The original method calculates class change proneness by synthe-

sizing: (a) the internal probability of the class to undergo changes 

(internal change probability); and (b) the probability of the class 

to receive changes due to ripple effects—i.e., changes that propa-

gate from one class to the other due to structural dependencies 

(propagation factor). However, the original method does not 

support calculating these two factors, leading to the use of con-

stants as internal change probabilities and propagation factors to 

all system classes. Nevertheless, these parameters are not ex-

pected to be uniform for all classes. Thus, the contribution of this 

study is the enhancement of the method by efficiently calculating 

these two factors (more details are provided in Section 3). In par-

ticular we propose the use of: 

· Ripple Effect Measure (REM) as a proxy of the propaga-

tion factor. We had previously introduced REM and vali-

dated it both theoretically and empirically as a valid insta-

bility measure [6]; and 

· Percentage of Commits in which a Class has Changed 

(PCCC) as a proxy of internal change probability. This met-

ric has been adapted from the Commits per File metric that 

has been introduced by Zhang et al. as an indicator of com-

plexity, in the sense that a frequently changed file is ex-

pected to be more complex [29]. 

As an outcome, the proposed method calculates a metric, namely 

Change Proneness Measure (CPM). To evaluate the validity of 

the proposed method, and particularly the proposed CPM as an 

assessor of change proneness, we compare its accuracy with the 

accuracy of using: (a) existing coupling metrics, (b) only histori-

cal data, and (c) the original method, as assessors of change 

proneness. The reasons for selecting to compare the proposed 

metric (CPM) with the aforementioned alternative assessors are 

discussed in detail in the case study design section (see Section 

4). The evaluation is performed in an empirical manner, based on 

the guidelines provided by the IEEE Standard on Software Meas-

urement [1].  

The rest of the paper is organized as follows: In Section 2 we 

discuss related work, whereas in Section 3 we present the pro-

posed method for quantifying change proneness. Section 4 pre-

sents the design of the case study, whereas its results are present-

ed in Section 5. In Section 6 we discuss the main findings of the 

validation. Finally, Sections 7 and 8 present threats to validity and 

conclude the paper, respectively. 

2. RELATED WORK 

In this section, we present studies that are related to the quantifi-

cation of change proneness. Han et al. have proposed a metric for 

assessing change proneness of classes, based on UML class dia-

grams. The approach was based on studying the behavioral de-

pendencies of classes [14]. The proposed measure is different 

from our work in the sense that it is based solely on structural 

information and completely disregards the change history of clas-

ses. In a similar context, Lu et al. performed a meta-analysis to 

investigate the ability of object-oriented metrics to assess change 

proneness [20]. The results of the study suggested that size met-

rics are the optimum assessors of change proneness, followed by 

cohesion and coupling metrics [20]. The outcome of this case 

study can be considered as expected in the sense that larger clas-

ses are by nature more probable to change in a next version of the 

systems, since they are probably related to more requirements and 

are probably receiving more ripple effects from other classes.  

Furthermore, Koru and Tian [18] focused only on highly change-

prone classes and classes with high values of size, coupling, cohe-

sion, and complexity measures. The results of their study pointed 

out that the most change-prone classes were not those with the 

highest metric scores (although they have been highly ranked) 

[18]. This outcome verifies our intuition that structural metrics 

alone cannot form an accurate assessor of change proneness. Fi-

nally, Schwanke et al. focused only on bug-related change fre-

quency (i.e., fault proneness), and tried to identify assessors for it 

[23]. The results suggested that fan-out (i.e., other artifacts to 

which a module depends on) is a fairly good assessor of change 

proneness [23], further highlighting the appropriateness of cou-

pling metrics as assessor of change proneness.  

Finally, in the early ‘80s Yau and Collofello proposed some 

measures for design and source code stability. Both measures 

were considering the probability of an actual change to occur, the 

complexity of the changed module, the scope of the used varia-

bles, and the relationships between modules [27][28]. However, 

the specific studies (they are among the first ones that discuss 

software instability as a quality attribute) are kept in a rather ab-

stract level, without proposing specific metrics or tools for quanti-

fying them. In a more recent study (2007), Black proposed an 

approach for calculating a complexity-weighted total variable 

propagation definition for a module, based on the model proposed 

by Yau and Collofello. The approach calculates complexity met-

rics, coupling metrics, and control flow metrics, and their combi-

nation provides an estimate of change proneness [10].  

As a summary of related work we have identified the following 

limitations: (a) rely on a single source of information (i.e. struc-

tural or historical data), (b) the accuracy of the metric-based ap-

proaches is rather low, and (c) most of existing approaches lack 

applicability in the sense that they do not provide tools.. To this 

end, in this work, we propose a method that achieves higher accu-

racy than metric-based approaches and we accompany our meth-

od with a tool, so as to enhance its applicability. 

3. PROPOSED METHOD  

Assessing whether a given software module will change in a fu-

ture version is an ambitious goal, because any actual decision to 



perform changes to a class is subject to numerous factors. The 

probability that a certain class will change in the future is affected 

not only by the likelihood of modifying the class itself but also by 

possible changes in other classes that might propagate to it. These 

so-called ripple effects [15] causing change propagation are the 

result of dependencies [24]) among classes through which a 

change in a class (such as the change in a method signature – i.e., 

method name, types of parameters and return type) can affect 

other classes enforcing them to be modified.  

The method that we employ in this study [24] analyzes the de-

pendencies in which each class is involved and calculates class 

change proneness. The calculation of change proneness is based 

on two main factors: the internal probability to change (i.e., the 

probability of a class to change due to changes in requirements, 

bug fixing, etc.) and the external probability to change, which 

corresponds to the probability of a class to change due to ripple 

effects (i.e., changes propagating from other classes). Each de-

pendency carries a different probability of propagating changes 

(propagation factor), which is used in the calculation of the cor-

responding external probability to change: if class A has a de-

pendency to another class B, the external probability of A to 

change due to B is obtained as:  

P(A:externalB) = P(A|B) • P(B) 

P(A|B) is the propagation factor between classes B and A (i.e., 

the probability that a change made in class B is emitted to class 

A). P(B) refers to the internal probability of changing class B.  

To illustrate the application of our method, let’s consider the ex-

ample of Figure 1. 

 

Fig. 1.  Rationale of calculation of Change Proneness Metric 

(CPM) 

The calculation of change proneness for class A (see Figure 1) 

should take into account: 

· Internal probability to change of A — P(A) 

· External probability to change due to ripple effects from B1 

— P(A:externalB1). This value represents the probability of 

A to change because of its dependency to B1. Thus it de-

pends both on the internal probability of B1 to change (as a 

trigger to the ripple effect) and the possibility of these 

changes to propagate along the B1àA dependency (as a 

proxy of the probability that the change will be emitted 

from B1 to A). 

· External probability to change due to ripple effects from B2 

— P(A:externalB2). 

· External probability to change due to ripple effects from B3 

— P(A:externalB3). 

Since a class might be involved in several dependencies (e.g., 

class A in Figure 1) and because even one change in dependent 

classes (in either B1 or B2, or B3 for the example of Figure 1) 

will be a reason for changing that class, the change proneness 

measure (CPM) is calculated as the joint probability of all 

events that can cause a change to a class. Thus, in the aforemen-

tioned example (see Fig. 1), class A might change due to the fol-

lowing events (whose probabilities to occur we join): (a) change 

in A itself, (b) a ripple effect from B1, (c) a ripple effect from 

B2, or (d) a ripple effect from B3: 

CPM(A) = Joint Probability {P(A), P(A:externalB1), 

P(A:externalB2), P(A:externalB3)} 

The accuracy in estimating CPM depends on the precision of the 

estimates of the internal probability of change for each class and 

the propagation factor for each dependency. 

Regarding the internal probability of change we use the percent-

age of commits in which a class has changed. In particular, we 

study all commits between two successive versions of a system 

and count in how many of those, each class has changed. This 

percentage is calculated for all past pairs of versions, and the 

obtained average is used as the internal probability of change. We 

note that we preferred to use an average of change frequency 

among all pairs of versions, instead of the change frequency in the 

whole lifecycle. The benefit of this decision is that the internal 

probability of change is calculated over a number of commits that 

are in the same level of magnitude as the predicted variable (i.e., 

the probability to change from one version to the next one). 

Concerning the propagation factor of changes among dependent 

classes we use the Ripple Effect Measure (REM) [6], which quan-

tifies the probability of a change occurring in class B to be propa-

gated to a dependent class A. REM essentially quantifies the per-

centage of the public interface of a class that is being accessed by 

a dependent class. The calculation of REM is based on dependen-

cy analysis. Such change propagations [13], are the result of cer-

tain types of changes in one class (e.g., a change in the method 

signature—i.e., method name, types of parameters and return 

type—that is invoked inside another method) that potentially emit 

changes to other classes. Such types of changes vary across dif-

ferent types of dependencies. According to van Vliet [25], there 

are three types of class dependencies, namely: generalization, 

containment, and association. We note that the aforementioned 

way of change propagation through class dependencies refers to 

designs that follow basic object-oriented design principles, i.e. 

encapsulation (classes do not hold public attributes). In cases that 

classes hold public attributes, these public attributes are also con-

sidered as a reason for change propagation, in the sense that they 

belong to the class public interface. REM has been empirically 



and theoretically evaluated as a valid assessor of the existence of 

the ripple effect through a case study on open-source projects [6]. 

4. CASE STUDY DESIGN 

To empirically investigate the validity of CPM to change prone-

ness, we performed a case study on five open source projects. We 

compare CPM to: (a) coupling metrics, (b) history of changes, 

and (c) the original method [24].  

Coupling metrics have been considered in this study for two rea-

sons: (a) they represent the existence / strength of dependencies 

among modules. Therefore, they are the structural metrics that can 

be considered as a proxy of change propagation probability; and 

(b) they are reported in four related studies ([14], [18], [20], and 

[23] see Section 2) as fair assessors of change proneness. In order 

to be as inclusive as possible, we selected metrics from three dif-

ferent metric suites (Chidamber and Kemerer [11], Li and Henry 

[19], and QMOOD [8]), which are well-known and tool-

supported. Also, the aforementioned metric suites include both 

code- and design-level coupling metrics. We note that all metrics 

described in related work have been investigated in our study. 

However, in some cases there are naming mismatches (e.g., fan-

out has the same definition as DCC that we use) due to the use of 

different quality model/metric suite for the definition of the met-

ric. The metrics that have been used as control variables are:  

· Coupling Between Objects (CBO): Number of classes to 

which a class is coupled [11]. 

· Response For a Class (RFC): Number of local methods, 

plus the number of methods called by local methods in the 

class [11]. 

· Message Passing Coupling (MPC): Number of send state-

ments defined in the class [19]. 

· Data Abstraction Coupling (DAC): Number of abstract da-

ta types defined in the class [19]. 

· Measure of Aggregation (MOA): Number of data declara-

tions of a user defined type [8].  

In addition to existing coupling metrics, we have also decided to 

compare CPM to the estimate that is offered by only using 

change history data so as to judge their assessing power. Thus, 

we will be able to verify whether the combination of historical 

and structural data (as performed in CPM) works better than they 

do in isolation. Finally, we compare CPM to the original method 

(i.e. as it has been proposed in [24]) so as to demonstrate the ben-

efit of enhancing the original method with the parameters de-

scribed in Section 3. 

The case study has been designed and reported according to the 

guidelines of Runeson et al. [22]. In this section we present: (a) 

the goal of the case study and the derived research questions, (b) 

the description of cases and units of analysis, (c) the data collec-

tion procedure, and (d) the data analysis process. Additionally, in 

this Section, we present the metric validation criteria. 

4.1 Metric Validation Criteria 

To investigate the validity of CPM and compare it with the other 

three assessors, we employ the properties described in the 1061 

IEEE Standard for Software Quality Metrics [1]. The standard 

defines six metric validation criteria suggesting the statistical test 

that shall be used for evaluating every criterion:  

· Correlation assesses the association between a quality fac-

tor and the metric under study to warrant using the metric as 

a substitute for the factor. The criterion is quantified by us-

ing a correlation coefficient [1].  

· Tracking assesses if the values of the metric under study 

can follow the changes in product quality that occur during 

their lifecycle. The criterion is quantified by using the coef-

ficient of rank correlation for a set of project versions [1].  

· Consistency assesses whether there is consistency between 

the ranks of the quality factor values (over a set of software 

components) and the ranks of the corresponding metric val-

ues. Consistency determines whether a metric can accurate-

ly rank a set of artifacts in terms of quality.  The criterion is 

quantified by using the coefficient of rank correlation [1].  

· Predictability assesses the accuracy with which the metric 

under study applied at a time point t1 is able to predict the 

levels of the quality factor at a time point t2. The criterion is 

quantified through the standard estimation error for a re-

gression model using as predictor the studied metric [1].  

· Discriminative Power assesses if the metric under study is 

capable of discriminating between high-quality and low-

quality components. Discriminative power can be quantified 

through a contingency table (see [1]) and employing Mann-

Whitney and the Chi-square test for differences in proba-

bilities. However, this type of quantification was not appli-

cable for coupling metrics, because they cannot be recoded 

as categorical variables, without setting arbitrary thresholds. 

Therefore, we use an equivalent test for assessing discrimi-

native power, i.e., Kruskall-Wallis test [12]. 

· Reliability assesses if the metric under study can fulfill all 

five aforementioned validation criteria, over a sufficient 

number of applications. This criterion can offer evidence 

that a metric can perform its intended function consistently. 

This criterion can be assessed by replicating the previously 

discussed tests (for each of the aforementioned criteria) to 

various software systems [1]. 

4.2 Research Objectives and Research Questions 

The aim of this study, expressed through a GQM formulation, is: 

to analyze CPM and other metrics (i.e., coupling, historical data, 

and the original method) for the purpose of comparison with 

respect to their validity to assess if a class is prone to change in 

the upcoming system version, from the point of view of research-

ers in the context of software maintenance and evolution. 

Driven by this goal and the validity criteria discussed in 1061-

1998 IEEE Std. [1], two relevant research questions have been 

set: The first research question aims to investigate the validity of 

the proposed Change Proneness Measure in comparison to the 

other three existing metrics, with respect to the first five validity 

criteria (i.e. correlation, consistency, tracking, predictability and 

discriminative power). For the first research question, we employ 

a single dataset comprising all examined projects of the case 

study. 



The second research question aims to investigate the validity in 

terms of reliability. Reliability is examined separately since, ac-

cording to its definition, each of the other five validation criteria 

should be tested on different projects. In particular, for this re-

search question we consider each software project as a different 

dataset and then results are cross-checked to assess the metric’s 

reliability. The two research questions are formulated as follows: 

RQ1:  How does CPM compare to the other metrics, based on 

the criteria of the 1061-1998 IEEE Std? 

RQ1.1:  How does CPM compare to the other metrics, w.r.t. 

correlation? 

RQ1.2:  How does CPM compare to the other metrics, w.r.t. 

consistency? 

RQ1.3:  How does CPM compare to the other metrics, w.r.t. 

tracking? 

RQ1.4:  How does CPM compare to the other metrics, w.r.t. 

their predictive power? 

RQ1.5:  How does CPM compare to the other metrics, w.r.t. 

their discriminative power? 

RQ2:  How does CPM compare to the other metrics, w.r.t. their 

reliability? 

4.3 Case and Units of Analysis 

This study is an embedded multiple-case study, i.e. it studies mul-

tiple cases where each case is comprised of many units of analy-

sis. Specifically, the cases of the study are open source projects, 

where classes are units of analysis. We note that an alternative to 

the aforementioned scenario would be the consideration of classes 

as cases and units of analysis and the compilation of a single da-

taset. However, this decision would hurt the validity of the dataset 

in the sense that projects with different characteristics (e.g., num-

ber of commits per versions, number of classes, etc.) would be 

merged in one dataset. Therefore, any reporting of results is per-

formed at the project level. The results are aggregated to the com-

plete dataset by using the mean function and a percentage of pro-

jects in which the results are statistically significant. 

As subjects for our study, we selected to use the last five versions 

of five open source projects written in Java. A short description of 

the goals of these projects is provided below, whereas some de-

mographics are provided in Table I. jFlex is a lexical analyzer 

generator (also known as scanner generator) for Java.. jUnit is a 

simple framework to write repeatable tests. Apache-commons-io 

is a utility library that assists developing IO functionality. 

Apache-commons-validator provides the building blocks for both 

client- and server-side data validation. Apache-velocity-engine is 

a general-purpose template engine.. The main motivation for se-

lecting jFlex was the intention to reuse an existing dataset, which 

has been developed and used for a research effort with similar 

goals (see [24]). The rest of the projects have been selected as 

representative projects of good quality, since the Apache founda-

tion is well-known for producing high-quality projects, whereas 

jUnit is a very well-reputed project that is very frequently used / 

reused in software development. All classes of these systems have 

been used as cases for this study. Therefore, our study was per-

formed on approximately 650 java classes (on average: ap-

prox.130 classes per project). 

Table I. OSS Project Demographics 

Project 
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1.4.1

1.6.0 
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1.6.1 

jUnit 164 142 674 
4.8.1

4.11 

4.11 

4.12 

commons-io 62 167 413 
1.4 

2.4 

2.4 

2.5 

commons-validator 145 186 41 
1.3.1

1.5.0 

1.5.0 

1.5.1 

velocity-engine 229 86 82 
1.6.1

1.6.4 

1.6.4 

1.7.0 

4.4 Data Collection 

For each unit of analysis (i.e., class), we recorded twelve varia-

bles, as follows: 

· Demographics: 3 variables (i.e., project, version, class 

name). 

· Assessors: 8 variables (i.e., CPM, CBO, RFC, MPC, DAC, 

MOA, PCCC, and CPM_old1). These variables are going 

to be used as the independent variables for testing correla-

tion, predictability and discriminative power. We note that 

although the calculation of CPM takes as input PCCC, we 

use both of them as independent variables since we want to 

isolate the power of using historical data of class changes as 

an assessor of change proneness (see introduction of Sec-

tion 5). All metrics are calculated in the last training ver-

sion. 

· Actual changes: We use PCCC for the transition between 

the last two versions of a class (i.e., those that we want to 

predict—see last column of Table I), as the variable that 

captures the actual changes. This variable is going to be 

used as the dependent variable in all tests. 

The metrics evaluated as assessor of change proneness have been 

calculated by using three tools. PCCC is calculated by a tool that 

has been developed by the first and the second author. The tool is 

using the GitHub API to calculate in how many commits each 

class has been modified. The tool receives as input a starting and 

an ending commit hash tag. The tool is freely available for down-

load in the web2. CPM has been calculated by modifying the tool 

of Tsantalis et al. [24]. The tool in its original version was used to 

calculate CPM_old. In the updated version [2], which is freely 

available for download in the web3, REM has substituted the 

                                                                 

1  The assessment of change proneness as performed by the original 

method 
2  http://www.cs.rug.nl/search/uploads/Resources/CommitChangeCalc.rar  

3  http://www.cs.rug.nl/search/uploads/Resources/InstabilityCalculator.rar  



propagation factor, so as to increase the realism of the calculated 

change probability. We note that concerning internal probability 

of change we feed the tool with PCCC calculated by the afore-

mentioned tool. The rest of the coupling metrics, have been cal-

culated using the Percerons Client tool. Percerons is an online 

platform [4] created to facilitate empirical research in software 

engineering, by providing, among others, source code quality 

assessment [3]. 

4.5 Data Analysis 

The collected variables (see previous section) will be analyzed 

against the six criteria of the 1061 IEEE Standard (see Section 

4.1) as imposed by the guidelines of the standard (see Table II).  

Table II. Measure Validation Analysis 

Criterion Test    Variables 

Correlation 
Pearson  

correlation  

Assessors 

Actual changes  

(last version of the projects) 

Consistency 
Spearman  

correlation  

Assessors 

Actual changes  

(last version of the projects) 

Tracking 
Spearman  

correlation 

Assessors 

Actual changes  

(across all versions) 

Predictability 
Linear 

Regression  

Independent: Assessors 

Dependent:  Actual changes 

(last version of the projects) 

Discriminative 

Power 

Kruskal Wallis 

Test 

Testing: Assessors 

Grouping: Actual changes 

(last version of the projects) 

Reliability 
all the aforementioned tests 

(seperately for each project –across all versions) 

For presenting the results on Correlation and Consistency, we 

use the correlation coefficients (coeff.) and the levels of statistical 

significance (sig.). The value of the coefficient denotes the degree 

to which the value of the actual changes is in analogy to the value 

of the assessor. To represent the Tracking property of the evalu-

ated metrics, we report on the consistency (i.e. the coefficient of 

rank correlation between the quality factor and metric values) for 

multiple project versions. In particular, we report the mean corre-

lation coefficient and the percentage of versions, in which the 

correlation was statistically significant. For reporting on Predict-

ability, with a regression model, we present the level of statistical 

significance of the effect (sig.) of the independent variable on the 

dependent (how important is the predictor in the model), and the 

accuracy of the model (i.e., mean standard error). While investi-

gating predictability, we produced a separate linear regression 

model for each predictor (univariate analysis), because our inten-

tion was not to investigate the cumulative predictive power of all 

metrics, but of each metric individually.  

Additionally, for presenting the Discriminative Power of each 

metric, we investigate whether groups of classes differ with re-

spect to the corresponding metric score. The groups of classes 

have been created using the equal frequency binning technique 

[26]. For reporting on the hypothesis testing, we present the level 

of statistical significance (sig.) of the Kruskall-Wallis test. We 

note that in order for a metric to adequately discriminate groups 

of cases, the significance value should be less than 0.05, or 0.01 

for strict evaluations. In the case of our study, we preferred to use 

the 0.01 threshold since many differences were significant at the 

0.05 level, leading to inconclusive results. Finally, for reporting 

on the Reliability of metrics while assessing if a class will change, 

we present the results of all the aforementioned tests, separately 

for the five explored OSS projects. The extent to which the results 

on the projects are in agreement (e.g., is the same metric the most 

valid assessor of class change proneness for all projects?) repre-

sents the reliability of the considered metric.  

5. RESULTS 

In this section, we present the results of the case study. Section 

6.1 presents the results on the comparison of CPM to the other 

candidate change proneness assessors, with respect to five validi-

ty criteria (correlation, tracking, consistency, predictability and 

discriminative power). Section 6.2 presents the assessment of the 

reliability of CPM.  

5.1 Correlation, Consistency, Tracking, Predicta-

bility and Discriminative Power (RQ1) 

In this section we present the results obtained for answering RQ1. 

In Table III, we present the results of correlation analysis. In par-

ticular, each row of the table represents one project, whereas each 

column an assessor of change proneness. The cells of the table 

denote the Pearson correlation co-efficient. The italic fonts denote 

statistically significant correlations, whereas bold fonts the asses-

sor that is the most highly correlated with the actual change 

proneness. The two final rows of Table III (grey-shaded cells) 

correspond to the percentage of projects in which the specific 

assessor is statistically significantly correlated to the actual value 

of change proneness (sig.) and the projects for which the metric is 

the optimal assessor (best assessor). Table IV follows the same 

formatting, but the presented results correspond to the Spearman 

correlation coefficients. Finally, Table V presents the obtained 

results for tracking: in each row we present the mean Spearman 

correlation coefficient obtained by assessing the change prone-

ness of all versions from the previous ones. 

Table III. Correlation Analysis 
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Io .615 .368 .872 .878 -.063 .431 -.190 .653 .160 

Velocity .152 .105 -.033 .033 -.079 .068 -.045 .042 .068 

validator .763 -.017 .328 .341 -.072 .053 .116 .675 .184 

jFlex .600 .115 .048 .129 - .053 -.028 .799 .045 

jUnit .591 .305 .455 .452 .141 .395 .231 .543 .185 

% sig. 100% 40% 60% 60% 0% 40% 0% 60% 20% 

best assessor 60% 0% 0% 20% 0% 0% 0% 20% 0% 



Table IV. Consistency Analysis 
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io .339 .059 .492 .524 -.065 .211 .132 .221 .100 

velocity .234 .167 .021 .030 -.101 .097 -.054 -.039 .064 

validator .437 .011 .227 .297 -.022 .074 -.035 .454 .270 

jFlex .620 .389 .241 .380 - .240 .181 .619 .204 

jUnit .346 .285 .462 .431 .064 .211 .166 .393 .151 

% sig. 100% 40% 60% 60% 0 % 100% 0% 60% 20% 

best assessor 40% 0% 0% 20% 0% 0% 0% 40% 0% 

Table V. Tracking Analysis 
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Io .319 .071 .467 .576 -.055 .232 .099 .177 .085 

velocity .192 .200 .019 .026 -.079 .082 -.011 -.035 .054 

validator .371 .012 .216 .267 -.012 .070 -.007 .341 .257 

jFlex .527 .428 .265 .361 .000 .264 .199 .508 .224 

jUnit .311 .342 .416 .474 .058 .232 .183 .275 .136 

% sig. 80% 40% 60% 80% 0 % 80% 0% 40% 20% 

best assessor 40% 20% 0% 40% 0% 0% 0% 0% 0% 

The results of Tables III and IV suggest that CPM is strongly 

correlated to the actual change proneness of a class [21]. In addi-

tion, CPM is the optimal assessor of change proneness, both in 

terms of actual value (see Table III) and ranking (see Table IV). 

Concerning correlation to the actual value of change proneness, 

the second most valid metric is PCCC. MPC is the second metric 

that can most accurately rank classes, based on their change 

proneness. Finally, the results of Table V imply that when consid-

ering the complete evolution of projects, the validity of CPM 

decreases to a moderate correlation [21]. Despite this decrease, 

CPM remains the most accurate assessor of class ranking, based 

on change proneness. 

In Table VI we present the results of the Linear Regressions that 

have been performed to validate the predictive power of each 

assessor. The cells in Table VI represent the standard error of the 

regression model, whereas the rest of the notations remain un-

changed. Similarly to the results presented in Table III, in Table 

VI we can observe that CPM and PCCC are the optimum predic-

tors of class change proneness, followed by RFC and MPC. How-

ever, we need to note that CPM is significantly correlated with 

change proneness in all OSS projects that we have examined, 

whereas PCCC only in 60%. 

 

Table VI. Predictability Analysis 
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io .011 .013 .007 .006 .014 .013 .014 .010 .014 

velocity .006 .006 .001 .006 .006 .006 .080 .006 .006 

validator .021 .033 .031 .031 .033 .033 .039 .022 .032 

jFlex .010 .013 .013 .013 - .013 .013 .007 .013 

jUnit .009 .011 .010 .010 .011 .010 .011 .009 .011 

% sig. 100% 40% 60% 40% 0% 40% 20% 60% 20% 

best assessor 40% 0% 20% 20% 0% 0% 0% 40% 0% 

Finally, regarding discriminative power the results are presented 

in Table VII. All notations of Table VII remain the same, with the 

difference that cell values represent the level of significance in the 

differences of metric scores. The results of Table VI suggest that 

in all OSS projects CPM is able to discriminate groups of classes, 

based on their change proneness, i.e., classify them into groups 

with similar values of change proneness. The metrics that are 

ranked second, with respect to their discriminative power are 

CBO, MPC, and PCCC. 

Table VII. Discriminative Power Analysis 
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io .000 .494 .000 .000 .059 .060 .015 .146 .392 

velocity .000 .001 .064 .039 .291 .087 .725 .315 .053 

validator .000 .002 .021 .006 .181 .268 .926 .000 .105 

jFlex .000 .000 .056 .010 1.0 .016 .007 .000 .035 

jUnit .000 .024 .000 .000 .473 .119 .079 .000 .287 

% sig.  

(<0.01) 
100% 60% 40% 60% 0% 0% 20% 60% 0% 

5.2 Reliability (RQ2) 

Regarding RQ2, we performed all the aforementioned tests sepa-

rately for each one of the analyzed projects. In order for a metric 

to be considered a reliable assessor of change proneness, it should 

be consistently ranked among the top assessors for each criterion. 

To visualize this information, in Figures 2a - 2e we present a 

stacked bar chart for each validity criterion. In each chart, every 

bar corresponds to one change proneness assessor, whereas each 

stack represents the ranking of the assessor among the evaluated 

ones for each project. For example, in Figure 2a, we can observe 

that CPM is the top-1 assessor of change proneness, with respect 

to correlation in three projects and the top-2 assessor, for one 

other project. We need to clarify that in some Figures the count of 

1st, 2nd and 3rd positions does not sum up to five, since in case of 

equal scores, all metrics have been scored with the highest rank. 



 

(a) Correlation Analysis 

 

(b) Consistency Analysis 

 

(c) Tracking Analysis 

 

(d) Predictability Analysis 

 

(e) Discriminative Power Analysis 

Fig. 2. Reliability Assessment 

To obtain a synthesized view of the aforementioned results in 

Table VIII we adopt a point system to evaluate the consistency 

with which each assessor is highly ranked among others in the 

multiple criteria. In particular, for every top-1 position we reward 

the assessor with three points, for every second position with two 

points, and for every top-3 position with one point. In Table VIII 

each row represents a criterion, whereas each column an assessor 

of change proneness. The cells represent the points that each as-

sessor is gratified for each criterion. The last row, presents a sum 

of all criteria. Similarly, to before, bold fonts represent the most 

valid assessor. 

Table VIII. Reliability Analysis 
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Corelation 11 2 3 5 0 1 0 8 1 

Consistency 9 3 5 6 0 1 0 6 0 

Tracking 9 5 4 7 0 1 0 4 0 

Predictive 11 3 2 5 1 1 0 8 1 

Discriminative 15 6 6 6 0 0 0 9 1 

Total 55 19 19 29 1 4 0 35 3 

The results of Figure 2 and of Table VIII suggest that CPM is the 

most reliable assessor of class change proneness, followed by  

PCCC and MPC. We also need to note that MOA and DAC are 

the least reliable assessors. Concerning specific validity criteria, 

CPM is more reliable concerning discriminative and predictive 

power, as well as correlation. Regarding the ability of CPM to 

rank classes, based on their change proneness, we can observe 

that the reliability of CPM is similar to MPC (although higher). 

6. DISCUSSION 

In this section, the outcome of this study is discussed from two 

different perspectives. First, we provide possible interpretations 

of the obtained results; and second, we present possible implica-

tions to researchers and practitioners. 

 



6.1 Interpretation of the Results  

The results of this study suggest that CPM, as a change proneness 

assessor, exceeds all other explored metrics on the considered 

validation criteria, followed by PCCC and MPC. It is expected 

that CPM outperforms other metrics, mostly because it combines 

the two aspects of change proneness (i.e., probability of the class 

itself to change due to changes in requirements, bug fixes, etc. 

and the probability of a class to change due to the ripple effects), 

whereas each other metric considers only one of the two. In par-

ticular, the assessment of internal probability of a class to change 

through past data provides an accurate proxy of changes through 

requirements/bug fixes/etc., similarly to the assessment of the 

ripple effect probability through the REM.  

By further focusing on these two aspects of change proneness an 

interesting observation can be made, by examining the outcomes 

obtained by exploring each validation criterion. The actual value 

of change proneness is more related to the amount of changes 

that can be counted in the history of the project, rather than to 

project structure. This finding is implied by the fact that for crite-

ria related to actual values (i.e., not rankings) PCCC is the second 

most accurate assessor of class change proneness. On the other 

hand, coupling metrics (e.g., MPC, RFC, etc.) perform better in 

assessing the ranking of classes with respect to change prone-

ness. This observation is intuitive since by nature PCCC is closer 

to change frequency in the sense that they are metrics of the same 

type, similar values, and range of values (esp. since we are ex-

ploring the same project). Regarding ranked metrics, where the 

aforementioned reasons (i.e., range of value) have been filtered 

out PCCC loses this advantage. 

Another interesting observation is that the validity of all metrics 

in terms of tracking are lowered compared to consistency. This 

outcome is expected since the training set for assigning the value 

of the internal class probability is getting smaller, while we are 

exploring earlier project versions, and therefore less accurate. 

This outcome implies that using a larger part of project history 

than five versions, might even more increase the validity of CPM 

and PCCC. However, this statement needs to be empirically eval-

uated by a follow-up study. 

Furthermore, by comparing the coupling metrics of this study, 

we can observe that MPC is the optimal assessor of class change 

proneness, followed by RFC and CBO. By contrasting RFC to 

MPC, we can conclude that the number of local methods that are 

used as a parameter in the calculation of RFC (and also consist 

the major difference in these two metrics) is not related to class 

change proneness. This finding complies with existing literature 

that suggests that class coupling is a better assessor of change 

proneness than complexity (a proxy of which is the number of 

local methods). By contrasting MPC to CBO it becomes apparent 

that the strength of a coupling relationship (offered by MPC) is 

more closely related to the notion of change proneness than the 

number of dependencies (counted by CBO). 

Finally, by comparing the validity of CPM when calculated with 

the enhancements that we proposed, against its original imple-

mentation we can observe that its validity has been significantly 

improved. More specifically, the correlation, consistency, and 

tracking ability of the metrics have been improved by approxi-

mately 300%, whereas it’s predictive power by 22%. Additional-

ly, the discriminative power of the metrics has been increased by 

our enhancements by 100%. We note that in the original introduc-

tion of the metric, only its predictive power has been assessed. 

6.2 Implications to Researchers and Practitioners 

Based on the aforementioned results and discussions, we can 

provide implications for researchers and practitioners.  

On the one hand, we encourage practitioners to use CPM in their 

quality monitoring processes, in the sense that CPM is the opti-

mal available assessor of the probability of a class to change. We 

expect that tool support4 that automates the calculation process 

will ease its adoption. Based on the expected relations of change 

proneness to more high-level software characteristics (e.g., in-

creased defect-proneness, more technical debt interest, etc.), it can 

be used as an assessor of future quality indicators. However, this 

claim needs to be verified through a follow-up study.  

On the other hand, we encourage researchers to transform CPM 

so as to fit architecture evaluation purposes, i.e., assess the 

probability of components to change. We believe that such a 

transformation would be of great interest for the architecture 

community. Also, such an attempt would increase the benefits of 

practitioners, in the sense that change impact analysis could scale 

into larger systems. Finally, we note that other claims that have 

already been stated in the manuscript that require further valida-

tion constitute interesting future work, i.e.: 

· the increase in the assessing power of CPM when a larger 

portion of software history is considered as a training set for 

the method; 

· the usefulness of the proposed metric in practice and its 

adoption by practitioners; and 

· the validity of the CPM metric in other levels of granularity. 

7. THREATS TO VALIDITY 

In this section we present the threats to the validity of our case 

study. In this case study, we aimed at exploring if certain metrics 

are valid assessors of class change proneness. Therefore, possible 

threats to construct validity [22] deal with the way that these met-

rics and change proneness are quantified, including both the ra-

tionale of the calculation and tool support. However, concerning 

the rationale on how the metrics are calculated, it should be noted 

that their definition is clear and well documented (see Section 3), 

whereas the used tools have been thoroughly tested, before de-

ployment. Additionally, in order to ensure the reliability [22] of 

this study, we: (a) thoroughly documented the study design in this 

document (see Section 4), so as to make the study replicable, and 

(b) all steps of data collection and data analysis have been per-

formed by two researchers in order to ensure the validity of the 

process. Furthermore, concerning the external validity [22] of our 

results, we have identified two possible threats. First, we investi-

gated only five OSS projects. The low number of subjects is a 

threat to generalization, in the sense that results on these projects 

cannot be generalized to the complete open source software pro-

jects population. However, since the units of analysis for this 

                                                                 

4  http://www.cs.rug.nl/search/uploads/Resources/InstabilityCalculator.rar  



study are classes and not projects, we believe that this threat is 

mitigated. On the other hand, an actual threat concerns the relia-

bility criterion, as it compares results from different projects and 

we only compare five OSS projects against each other. For this 

specific criterion, further investigation is required. Second, we 

investigated projects only written in Java due to the correspond-

ing tool limitations. Therefore, the results cannot be generalized 

in other languages, e.g., C++. This threat becomes, even more 

important, because C++ projects are expected to also make of use 

the friend operator, which changes the scope of class attributes. 

8. CONCLUSIONS  

In this study, we presented and validated a new method that cal-

culates the Change Proneness Metric (CPM), which can be used 

for assessing class change proneness. The method takes inputs 

from two sources: (a) class dependencies, which are used to cal-

culate the portion of the accessible interface of a class that is used 

by other classes, and (b) class change history, which is used as a 

proxy of how frequently maintenance actions are performed (e.g., 

modify requirements, fix bugs, etc.). After quantifying these two 

parameters (for all classes and for all their dependencies), CPM 

can be calculated at the class level, by employing simple proba-

bility theory. In this work CPM has been empirically validated 

against various change proneness assessors, based on the criteria 

defined in the 1061-1998 IEEE Standard for a Software Quality 

Metrics [1]. The conducted case study was an embedded one, and 

was executed on five OSS projects with more than 650 classes.  

The results of the validation suggested that CPM excels as an 

assessor of class change proneness compared to a variety of well-

known metrics. In particular, the results implied that both the 

historical and the structural information are needed for an accu-

rate assessment, since: (a) the historical data prove to more corre-

lated to the actual values of change proneness, and (b) the struc-

tural dependencies data are more useful for ranking classes. In 

any case, the combined perspective that is provided by CPM has 

been evaluated as the optimal assessor of change proneness, with 

respect to all validation criteria. Based on these results, implica-

tions for researchers and practitioners have been provided.   
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