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Abstract—Change proneness is a characteristic of software arti-
facts that represents their probability to change in future. 
Change proneness can be assessed at different levels of granulari-
ty, ranging from classes to modules. Although change proneness 
can be successfully assessed at the source code level (i.e., methods 
and classes), it remains rather unexplored for architectures. Ad-
ditionally, the methods that have been introduced at the source 
code level are not directly transferrable to the architecture level. 
In this paper, we propose and empirically validate a method for 
assessing the change proneness of architectural modules. As-
sessing change proneness at the level of architectural modules 
requires information from two sources: (a) the history of changes 
in the module, as a proxy of how frequently the module itself 
undergoes changes; and (b) the dependencies with other modules 
that affect the probability of a change being propagated from one 
module to the other. To validate the proposed approach, we per-
formed a case study on five open-source projects. Specifically, we 
compared the accuracy of the proposed approach to the use of 
software package metrics as assessors of modules change prone-
ness, based on the 1061-1998 IEEE Standard. The results suggest 
that compared to examined metrics, the proposed method is a 
better assessor of change proneness. Therefore, we believe that 
the method and accompanying tool can effectively aid architects 
during software maintenance and evolution. 

Keywords—Architectural metrics; Change proneness; Empirical 

I.  INTRODUCTION 
Change proneness is defined as the susceptibility of an ar-

tifact to change in an upcoming versions of a system [14], and 
is a cornerstone of change impact analysis [10]. Change 
proneness can be defined, quantified, and assessed on artifacts 
from different development phases, e.g., at the implementation 
level for assessing the urgency to eliminate the existence of a 
code smell [7], or at the architecture level for exploring the 
ripple effects along maintenance [2]. An application of change 
proneness at architecture level1, is its use as a proxy of interest 
probability for architectural technical debt [19]. Specifically, it 
is claimed that the repayment of technical debt for architectur-
al modules should be prioritized considering their susceptibil-
ity to change. In other words, inefficiencies identified in mod-

                                                           
1In the rest of the paper, the term ‘architecture level’ refers to the level of 

architectural modules. To scope our study further, as architectural modules, 
we consider source code packages, which are collections of classes. 

ules, do not pose a serious risk regarding projects’ sustainabil-
ity, when these modules are not frequently maintained / modi-
fied [19]. Moreover, identifying modules that are change 
prone can steer test planning, by focusing on parts of the ar-
chitecture that are more likely to undergo changes due to 
maintenance. 

In the literature, one can identify several approaches for 
assessing class change proneness (see Section II), but no ap-
proach at the architecture level and specifically on the level of 
architectural modules. According to a recent mapping study on 
design-time quality attributes, change proneness (and its relat-
ed quality attribute, namely instability) has been assessed by 
eight studies at the implementation level (e.g., [6]), six at the 
detailed-design level (e.g. [18]), but none at the architecture 
level [4]. Despite the existence of many methods on assessing 
the change proneness of artifacts at the implementation and 
design level, these methods are not directly transferable to the 
architecture level. Such a transfer would require, either: (a) 
the aggregation of the class level measurements to module 
level, using some known function (e.g., average, maximum, 
etc.), or (b) the re-introduction of the method’s constructs to 
the architecture level. The option of using aggregation func-
tions is not considered optimal, because it could potentially 
lead to inaccurate results. For example (see Fig. 1), consider 
the assessment of a two-package relationship (A�B) where 
each one contains five classes (A1-A5and B1-B5, respectively) 
and the packages communicate only through one interface 
(e.g., assume that A1calls methods from B1).  

 

Fig. 1. Aggregation of metrics to the architecture level 

As expected, classes belonging to the same package collabo-
rate to serve their common purpose (high intra-module cohe-
sion), therefore they are coupled to each other (e.g. each class 
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communicates with two others). The use of average would 
lead to an aggregated efferent coupling (Ce) [13] at the pack-
age level of 2.2 (A1: 3, A2-A5: 2), and a sum coupling that 
equals 11. However, this metric is inaccurate at the module 
level since the only inter-module dependency that exists is 
between A1and B1. Thus, the option to reshape a method to fit 
the architecture level is expected to yield more accurate re-
sults. However, this approach essentially leads to a new meth-
od that needs to be evaluated from scratch, so as to validate its 
fitness in the context of architecture.  

In this paper, with the goal to provide a change proneness 
assessment method for architectural modules, we proceed with 
the option to tailor the constructs of a method assessing 
change proneness at the design level (i.e., [3]) at the level of 
architecture. Based on the original method, to calculate the 
change proneness of an artifact, two parameters need to be 
quantified [17]: (a) the history of changes of the artifact, 
which can be captured e.g., through the frequency of changes 
along evolution; and (b) the structural characteristics of the 
software, such as coupling [3],[5]. To this end, we propose 
how these two parameters can be quantified (or at least as-
sessed) by considering architectural modules (i.e., packag-
es1—a collection of classes).As an outcome, the updated 
method calculates a metric, namely Module Change Proneness 
Measure (MCPM). Additionally, for the reasons explained 
before, we empirically validate the accuracy of the derived 
model, by comparing its validity with existing architectural 
coupling metrics. The evaluation is performed on five large-
scale Open Source Software (OSS) projects that provide us 
with 160 modules as units of analysis. The rationale and the 
study setup for the proposed method is a replication of the 
evaluation method proposed in the original study [3]. The 
evaluation is performed empirically, based on the guidelines 
of the 1069-1998: IEEE Standard on Software Measurement. 

The rest of the paper is organized as follows: In Section II 
we discuss related work and background information on met-
ric validation guidelines, whereas in Section III we present the 
proposed method for quantifying module change proneness. 
Section IV presents the design of the case study, whereas its 
results are presented in Section V. In Section VI we discuss 
the main findings of validation. Finally, Sections VII and VIII 
present threats to validity and conclude the paper. 

II. BACKGROUND INFORMATION 
In this section we discuss research efforts related to change 

proneness assessment at minimum on design level (see Sec-
tion II.A) and metric validation criteria as defined by the 
1069-1998: IEEE Standard on Software Measurement (see 
Section II.B) 

A. Related Work 
In the early ‘80s Yau and Collofello suggested the first 

measures for design instability (i.e., a term that is conceptually 
relevant to change proneness). Both measures were consider-
ing the probability of an actual change to occur, the complexi-
ty of the changed module, the scope of the used variables, and 
the relationships between modules [18]. However, the specific 
studies (they are among the first ones that discuss instability as 
a quality attribute) are kept at a rather abstract level, without 

proposing specific metrics or tools for quantifying them. In a 
more recent study, Black proposed an approach for instantiat-
ing the theoretical approach of Yau and Collofello, by calcu-
lating a model for assessing module change proneness. The 
approach calculates complexity, coupling, and control flow 
metrics, and their combination provides an estimate of change 
proneness [6]. The difference of the work of Black compared 
to our study is that Black considers single file as modules, 
which is at a lower level of granularity than the package level. 

 Additionally, many researchers have assessed change 
propagation at the class level. For instance, Han et al. pro-
posed a metric that can be used for assessing change prone-
ness of classes, based on studying the behavioral dependencies 
of classes [9]. Similarly, Lu et al. conducted a meta-analysis to 
investigate the ability of object-oriented metrics to evaluate 
change proneness [11]. The results suggested that size metrics 
are the optimum assessors of change proneness, followed by 
cohesion and coupling metrics [11].Finally, Schwanke et al. 
dealt only on bug-related change frequency (i.e., fault prone-
ness), and tried to identify assessors for it [16]. The results of 
this study proposed that fan-out (i.e., the number of other arti-
facts which a module depends on) is a good assessor of change 
proneness [16], further highlighting the appropriateness of 
coupling metrics as assessors of modules’ change proneness.  

B. Metric Validation Criteria 
For comparing the validity of MCPM to existing coupling 

metrics, we will use the criteria described in the 1061 IEEE 
Standard for Software Quality Metrics [1]. In this standard, six 
metric validation criteria are suggested, accompanied by the 
statistical test that shall be used for evaluating every criterion:  

• Predictability assesses the accuracy with which the metric 
under study applied at a time point t1 is able to predict the 
levels of the quality characteristic at a time point t2. The 
criterion is quantified through the standard estimation error 
for a regression model [1].  

• Discriminative Power assesses if the metric under study is 
capable of discriminating between high-quality and low-
quality components. Discriminative power can be quanti-
fied through a contingency table [1]. However, this type of 
quantification was not applicable for coupling metrics, be-
cause they cannot be recoded as categorical variables, 
without setting arbitrary thresholds. Therefore, we use the 
Kruskall-Wallis test [8]. 

• Correlation assesses the relationship between a quality 
characteristic and the metric under study to confirm that 
the use of the metric can substitute the characteristic. The 
criterion is quantified by using a correlation coefficient [1]. 

• Consistency assesses whether there is consistency between 
the ranks of the quality characteristic and the ranks of the 
metric under study. Consistency determines if a metric can 
accurately rank artifacts in terms of quality.  The criterion 
is quantified by the coefficient of rank correlation [1].  

• Tracking assesses if values of the metric under study can 
follow changes in the levels of the quality characteristic. 
Tracking is quantified by using the coefficient of rank cor-
relation for a set of project versions [1].  
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• Reliability assesses if the studied metric can fulfill all the 
aforementioned criteria, in a sufficient number of projects. 
Reliability offers evidence that a metric can perform its in-
tended function consistently. Reliability can be assessed by 
replicating the previously discussed tests (for each of the 
aforementioned criteria) to various software systems [1]. 

III. PROPOSED METHOD 
The probability that a module (in our case a package, i.e. a 

set of classes) will change in the future is affected not only by 
the likelihood of modifying the module itself, but also by pos-
sible changes in other modules that might propagate to it. 
Thus, the calculation of change proneness is based on two 
main factors: the internal probability to change (i.e., the 
probability of a module to change due to changes in require-
ments, bug fixing, etc.) and the external probability to 
change, which corresponds to the probability of a module to 
change due to ripple effects (i.e., changes propagating from 
other modules). To calculate the external probability to 
change, the various dependencies between modules need to be 
considered: if module A has a dependency to module B, the 
external probability of A to change due to B is obtained as: 

P(A:externalB) = P(A|B)•P(B) 

P(A|B) is the propagation factor between module B and A 
(i.e., the probability that a change made in B is emitted to A). 
P(B) refers to the internal probability of changing module B. 

To illustrate our method, let’s consider the example of Fig. 2, 
depicting four packages and some of the contained classes as 
well as the dependencies among packages, which in turn are 
due to dependencies between the contained classes.  

 

Fig. 2. Example System for MCPM Demonstration 

The calculation of change proneness for module A (see Fig. 2) 
should take into account the:  

• Internal probability to change of A—P(A). This probabil-
ity refers to the likelihood of changing any of the classes 
contained in package A for the resolution of bugs or the in-
troduction of a novel feature.  

• External probability to change due to ripple effects from 
package B—P(A:externalB).The value corresponds to 
the probability of A to change because of its dependency to 

B. It depends on the internal probability of B to change (as 
a trigger to the ripple effect) and the possibility of changes 
to propagate through the B�A dependency (as a proxy of 
the probability that the change be emitted). 

• External probability to change due to ripple effects from 
package C—P(A:externalC). 

• External probability to change due to ripple effects from 
package D—P(A:externalD). 

Since a module might be involved in several dependencies and 
because even one change in the dependent modules will be a 
reason for changing that module, the module change prone-
ness measure (MCPM) is calculated as the joint probability of 
all events that can cause a change to a module. In this exam-
ple, module A might change due to the following events: (a) 
change in A itself, (b) a ripple effect from B, (c) a ripple effect 
from C, or (d) a ripple effect from D, as follows: 

MCPM(A) = Joint Probability{P(A), P(A:externalB), 
P(A:externalC), P(A:externalD)} 

The accuracy in assessing MCPM depends on the precision 
of the estimates of the internal probability of change for each 
module and the propagation factor for each dependency. Re-
garding the internal probability of change we use the per-
centage of commits in which a module has changed [20]. We 
study all commits between two successive versions of a sys-
tem and count in how many of those, at least one class of the 
module has changed. This percentage is calculated for all past 
pairs of versions, and the obtained average is used as the in-
ternal probability of change. Concerning the propagation fac-
tor of changes among dependent modules we tailored the 
Ripple Effect Measure (REM) [3], which quantifies the proba-
bility of a change occurring in class B to be propagated to a 
dependent class A. REM essentially quantifies the percentage 
of the public interface of a class that is being accessed by a de-
pendent class. The calculation of REM is based on dependen-
cy analysis. Such change propagations [3], are the result of 
certain types of changes in one class (e.g., a change in the 
method signature—i.e., method name, types of parameters and 
return type—that is invoked inside another method) that po-
tentially emit changes to other classes. To fit the architecture 
level, REM has been changed to deal with modules instead of 
classes. At the module level we consider all class dependen-
cies that reach across modules. For example, to calculate the 
REM from package B to package A in Fig. 2, we consider two 
dependencies, namely A1 to B1 and A4 to B2. The aggregation 
of class to module dependencies yielding the Ripple Effect 
Measure between packages B and A, REM(B→A), is performed 
as follows, by tailoring the original definition of REM: 

�������� 	 
 ������� � ������� � �����������
������� � �������

�������������������

� !
 

NDMC: number of direct method calls 
NOM: number of methods 
NOA: number of attributes 
NPrA: number of protected attributes (only for inheritance)  
NOP: number of polymorphic methods (only for inheritance) 
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Details of REM calculation are provided in the paper, in which 
we defined and validated it [3].The rationale for building the 
REM calculation formula can be summarized as follows: The 
ratio of the two aforementioned counts is an estimate of the 
probability that a random change in the public interface of 
source class will occur in a member that will emit this change 
to the dependent class. In other words, as the number of the 
members of the source class that emit changes to another de-
pendent class, approaches the total number of members that 
can change in the source class, it becomes more probable for 
changes to propagate from the source class to the dependent 
class. Based on REM definition, the formula for calculating 
external probability, presented before, is updated as follows: 

P(A:externalB) = REM(B→A)•P(B) 

As any other probability the range of MCPM is [0, 1] (i.e., 0% 
to 100%). Although, we are not able to provide a threshold 
that discriminates highly from low change prone modules, the 
metric can prove useful for comparison purposes. 

IV. CASE STUDY DESIGN 
To investigate the validity of MCPM as an assessor of 

change proneness, we performed a case study on five OSS 
projects, and compare MCPM to three package-level coupling 
metrics. Coupling metrics have been considered in this study 
for two reasons: (a) they represent the existence / strength of 
dependencies among modules, and are thus structural metrics 
that can be considered as a proxy of external probability of 
change; and (b) they are reported in related studies (e.g. [16] 
and [18]) as fair assessors of change proneness. By consider-
ing that this study focuses on the architecture level, we needed 
to identify metrics calculated at module or package level [13]:  

• Afferent Coupling (Ca)—the number of classes in other 
packages that depend upon classes within the package. An 
indicator of packages responsibility. Afferent couplings 
signal inward dependencies [13];  

• Efferent Coupling (Ce) —the number of classes in other 
packages that at least one class in a package depends upon. 
An indicator of packages dependence on external modules. 
Efferent couplings signal outward dependencies that con-
sist reasons for change [13]; and  

• Instability (I) —the ratio of efferent coupling (Ce) to total 
coupling (Ce + Ca) such that I = Ce / (Ce + Ca). This met-
ric is an indicator of packages’ resilience to change, and its 
range is [0, 1]: I=0 indicating a completely stable package 
and I=1 indicating an unstable package [13]. 

The study has been designed and reported according to the 
guidelines of Runeson et al. [15]. In this section, we present: 
(a) the goal of the case study and the derived research ques-
tions, (b) the description of cases and units of analysis, (c) the 
data collection, and (d) the process for data analysis. 

A. Objectives and Research Questions. 
This study aims to analyze MCPM and package metrics for 
the purpose of evaluation with respect to their validity to as-
sess module change proneness, from the point of view of ar-
chitects in the context of software maintenance and evolution. 
Based this goal, we have set two research questions:  

RQ1:  How does MCPM compare to package metrics with 
respect to their validity as assessors of change prone-
ness based on the IEEE Standard on Software Meas-
urement (i.e., predictability, discriminative power, cor-
relation, consistency, and tracking)? 

RQ2:  How does MCPM compare to package metrics with 
respect to reliability? 

RQ1 aims to investigate the validity of the proposed measure, 
in comparison to three existing metrics, with respect to the 
first five validity criteria (i.e. correlation, consistency, track-
ing, predictability and discriminative power). For this research 
question we employ a single dataset comprising all examined 
projects. RQ2 aims to investigate the validity in terms of relia-
bility. Reliability is examined separately since, according to its 
definition, each of the other five criteria should be tested on 
different projects. For RQ2we consider each project as a dif-
ferent dataset and then results are cross-checked to assess met-
rics’ reliability. 

B. Case Selection Units of Analysis and Selection 
This study is an embedded multiple-case study, i.e., it studies 
multiple cases and each case is comprised of many units of 
analysis. Specifically, the cases are open source projects, 
whereas the units of analysis are their packages (i.e., the re-
porting is performed at the project level). The results are ag-
gregated to the complete dataset by using the percentage of 
projects in which the results are statistically significant. As 
subjects we selected to use the last five versions of five open 
source software (OSS) projects. A short description of the 
goals of these projects is provided in Table I, along with some 
demographics.  

TABLE I.  PROJECT DEMOGRAPHICS 

Project 
Training 

Transitions 
Assessment 
Transitions Description 

wro4j            
(32 packages) 1.7.0 �1.7.8 1.7.8 � 1.8.0 

a tool for 
optimization of web 
resources 

Guava          
(17 packages) 11.0 �19.0 19.0 � 21.0 a set of libraries for 

new collection types 

commons-lang 
(12 packages) 3.0.1 � 3.3.2 3.3.2 � 3.5 

a host of helper 
utilities for the java 
language API 

joda-time       
(7 packages) 2.8.2 �2.9.7 2.9.7 � 2.9.9 

a replacement for 
the Java date and 
time classes 

Wicket        
(72 packages) 7.0.0 � 8.0.0.2 8.0.0.2 � 8.0.0.4 a web application 

framework  

The projects have been selected based on: (a) their populari-
ty—i.e., highly reused libraries and frameworks (according to 
Maven Repository), (b) their programming language—the 
used tools can only parse Java code, (c) their non-trivial 
size—i.e., more than 500 classes (although their number of 
packages differs), and (d) their consistency in releasing new 
versions in rather stable timeframes—this is important since 
the training versions should have a similar number of commits 
as the assessment versions. Thus, our study was performed on 
about 160 Java packages (on average: ~30 per project). 
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C. Data Collection& Analysis 
For each unit of analysis (i.e., package), we recorded eight 

variables: (a) Demographics—project, version, package name; 
(b) Assessors (MCPM, Ca, Ce, and I)—these variables are 
going to be used as the independent variables, and are calcu-
lated in the last training version; and (c) Actual changes—we 
calculate the percentage of commits in which the correspond-
ing package has changed (PCPC) in the transition between the 
last two versions of a system (i.e., those that we want to as-
sess—see last column of Table I), as the variable that captures 
the actual changes. PCPC is going to be used as the dependent 
variable in all tests, representing the actual change proneness. 
The aforementioned metrics have been calculated with two 
tools. PCPC is calculated by a tool that uses the GitHub API to 
count in how many commits each package has been modi-
fied2.All assessors have been calculated by modifying the tool 
of Tsantalis et al. [17].  

The variables are analyzed against the criteria of 1061 
IEEE Standard, as imposed by the standard per se. More de-
tails on the assessment of each criterion are provide in Section 
II, whereas an overview is presented in Table II. 

TABLE II.  MEASURE VALIDATION ANALYSIS 

Criterion Test    Variables Target 
Version

Predictability Linear Regression 
Independent: Assessors 
Dependent: Actual Changes

Last  

Discriminative 
Power 

Kruskal-Wallis 
Test 

Testing: Assessors,  
Grouping: Actual Changes 

Last 

Correlation Pearson Correl. Independent:  
Assessors 
Dependent: 
Actual Changes 

Last  

Consistency Spearman Correl. Last 

Tracking Spearman Correl. All 

Reliability All the aforementioned tests All 

V. RESULTS 
In this section, we present the results of the case study. 

Section V.A presents the results on comparing MCPM to other 
candidate change proneness assessors, with respect to five 
criteria (correlation, tracking, consistency, predictability and 
discriminative power), and Section V.B concerns reliability.  

A. Correlation, Consistency, Tracking, Predictability and 
Discriminative Power (RQ1) 
In Table III we present the results of the univariate Linear 

Regressions that have been performed to validate the predic-
tive power of each assessor; and in Table IV the results on the 
Discriminative Power of the assessors. The cells of Table III 
represent the standard error of the regression model and the 
cells of Table IV represent the level of significance in the dif-
ferences of metric scores. The rest of the notations remain 
unchanged. Table III suggests that MCPM and Ce are the best 
predictors of package change proneness. In addition, the re-
sults of Table IV suggest that MCPM and Ce are the optimal 
assessors for discriminating groups of packages, based on their 
change proneness, i.e., classify them into groups with similar 
values of change proneness. 

                                                           
2http://www.cs.rug.nl/search/uploads/Resources/ 

TABLE III.   PREDICTIVE POWER 

Project MCPM Ca Ce I 

wro4j .030 .031 .030 .032 

Guava .104 .110 .115 .119 

commons-lang .067 .112 .075 .125 

joda-time .319 .324 .320 .320 

Wicket .012 .012 .008 .013 

% sig. 60% 40% 40% 0% 

TABLE IV.  DISCRIMINATIVE POWER 

Project MCPM Ca Ce I 

wro4j .008 .587 .049 .613 

Guava .059 .277 .139 .835 

commons-lang .999 .727 .999 .889 

joda-time .381 .190 .571 .381 

wicket .000 .734 .000 .862 

% sig. 40% 0% 40% 0% 

In Tables V - VII, we present the results of the first three 
criteria: (a) correlation, (b) consistency, and (c) tracking. Each 
row of the tables represents one project, whereas each column 
denotes the correlation coefficient for each metric (i.e., Pear-
son for correlation and Spearman for consistency). Regarding 
tracking (see Table VII) the cells of each column present the 
mean Spearman correlation coefficient obtained by assessing 
the change proneness for all versions. The italic fonts denote 
statistically significant correlations, whereas bold fonts the 
assessor that is the most highly correlated with actual change 
proneness. Finally, the last row of each table corresponds to 
the percentage of projects, in which the specific assessor is 
significantly correlated to the actual change proneness.  

TABLE V.  CORRELATION ANALYSIS 

Project MCPM Ca Ce I 

wro4j .348 .288 .346 .102 

Guava .487 .407 .272 .109 

commons-lang .805 .156 .754 -.166 

joda-time .205 .090 -.187 -.409 

Wicket .476 .412 .791 -.016 

% sig. 80% 40% 40% 0% 

Table V suggests that MCPM is in 60% of the cases 
strongly correlated (see interpretation of correlation coeffi-
cients in [12]—corr. coefficient > 0.4) to actual package 
change proneness. At the individual project level, MCPM is 
very strongly correlated to change proneness for 20% of the 
projects, strongly correlated for 40%, and moderately correlat-
ed for 40%; whereas it is the most valid assessor in terms of 
correlation for 80% of the projects. We note that MCPM is 
significantly correlated with change proneness in all OSS pro-
jects that we have examined, whereas Ca and Ce only in 40%. 
Additionally, MCPM is the best change proneness assessor in 
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all three criteria—see Tables V to VII. However, we observe 
that the results on tracking (Table VII) have lower values, 
denoting decreased validity when considering the complete 
project lifetime. 

TABLE VI.  CONSISTENCY ANALYSIS 

Project MCPM Ca Ce I 

wro4j .398 .052 .379 .110 

Guava .437 .484 .409 .197 

commons-lang .306 .110 .242 .013 

joda-time .378 .321 -.161 -.400 

Wicket .419 -.069 .623 .059 

% sig. 60% 20% 40% 0% 

TABLE VII.  TRACKING ANALYSIS 

Project MCPM Ca Ce I 

wro4j .390 .050 .375 .105 

Guava .400 .450 .301 .150 

commons-lang .301 .106 .240 .010 

joda-time .370 .317 -.155 -.395 

Wicket .410 -.064 .618 .052 

% sig. 40% 20% 40% 0% 

B. Reliability (RQ2) 
Regarding RQ2, we executed all the aforementioned tests 

separately for each project. For a metric to be considered a 
reliable assessor of change proneness, it should be consistently 
ranked among the top assessors for each criterion. To visualize 
this information, in Figures 3a - 3e we present a stacked bar 
chart for each validity criterion. In each chart, every bar corre-
sponds to one change proneness assessor, whereas each stack 
represents the ranking of the assessor among the evaluated 
ones for each project. 

(a) Predictability Analysis 

(b) Discriminative Power Analysis 

(c) Correlation Analysis 

 
(d) Consistency Analysis 

(e) Tracking Analysis 

Fig.3.Reliability Assessment 

From Figure 3c, we can observe that MCPM is the top-1 as-
sessor (blue) of change proneness, with respect to correlation 
in three projects and the top-2 assessor (orange), for one other 
project. For some charts the count of 1st (blue), 2nd (orange) 
and 3rd (grey) positions does not sum up to five, since in case 
of equal scores, metrics are assigned the highest rank. 

TABLE VIII.  RELIABILITY ANALYSIS 

Criterion MCPM Ca Ce I 

Corelation 14 7 9 0 

Consistency 13 6 9 2 

Tracking 13 6 9 2 

Predictive Power 14 6 11 4 

Discriminative Power 12 9 8 4 

Total 66 34 46 12 

In Table VIII we present a synthesized view of the aforemen-
tioned results. Specifically, we use a point system to evaluate 
the consistency with which each assessor is highly ranked 
among others in all criteria. In particular, for every first posi-
tion we reward the assessor with three points, for every second 
position with two points, and for every third position with one 
point. In Table VIII each row represents a criterion, whereas 
each column an assessor of change proneness. The cells repre-
sent the points that each assessor scored for each criterion. The 
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last row, presents a sum of all criteria. The results presented in 
both Table VIII and Figure 3, suggest that MCPM is the most 
reliable assessor of package change proneness, followed by 
Ce. 

VI. DISCUSSION 

A. Interpretation of the Results  
The results of this study suggest that at the architecture 

level, MCPM is a better assessor of change proneness, com-
pared to all other explored metrics, followed by Ce. It is ex-
pected that MCPM outperforms other metrics, mostly because 
it combines the two aspects of change proneness (i.e., proba-
bility of the package itself to change due to changes in re-
quirements, bug fixes, etc. and the probability of a package to 
change due to the ripple effects), whereas all other coupling 
metrics consider only the second aspect (i.e., structural de-
pendencies). In addition, all other package metrics are just 
counting dependencies among packages and do not quantify 
the strength of the relationship. The proposed measure consid-
ers the percentage of the public interface of a module that is 
being accessed by another module and therefore accurately 
captures the probability of change propagation between them.  

Another interesting observation is that the validity of all 
metrics in terms of tracking is lower compared to consistency. 
This outcome is expected since the training set for assigning 
the value of the internal package probability is getting smaller, 
while we explore earlier project versions, and therefore the 
tracking ability becomes less accurate. This outcome implies 
that using a project history longer than five versions, might 
increase even more the validity of MCPM. However, this 
statement needs to be empirically evaluated by a follow-up 
study. Furthermore, by comparing the package metrics of this 
study, we can observe that efferent coupling is a better asses-
sor of change proneness than afferent coupling and instability. 
This finding is reasonable since outward dependencies (i.e., 
packages in which a package relies upon) are more important 
than inward ones when assessing the susceptibility of modules 
to change. Additionally, this result is in accordance to related 
work, at the class level, which suggests that the fan-out metric 
is a more important parameter than fan-in regarding change 
proneness [16].  

B. Implications to Researchers and Practitioners 
Based on the aforementioned results and discussions, we 

can provide implications for researchers and practitioners. On 
the one hand, we encourage practitioners, and especially archi-
tects, to use MCPM in their quality monitoring processes, in 
the sense that MCPM is a better assessor of the probability of 
a module to change, compared to other metrics (although a 
more thorough validation with practitioners is still required). 
We expect that tool support automating the calculation process 
will ease its adoption. Based on the expected relations of 
change proneness to more high-level quality characteristics 
(e.g., increased defect-proneness, more technical debt interest, 
etc.), it can be used as an assessor of future quality indicators. 
In particular, test case prioritization can highly benefit from 
observing the value of MCPM for system modules that are 
changing. For example, additional modules that need to be 
tested can be identified through the dependency analysis pro-

vided by the tool. The tool aids in test prioritization in the 
sense that it designates the probability of the dependent mod-
ule to change due to ripple effects. We believe that the tailor-
ing of the method to the architecture level consist it even more 
beneficial (compared to the class level), since it increases the 
scalability of change impact analysis to larger systems. 

On the other hand, we suggest that researchers should tai-
lor the MCPM to the level of requirements, i.e., assess the 
probability of a requirement to change in the future and com-
pile a list of other requirements that might be affected. We 
believe that such a transformation would be of great interest 
for the software engineering community, in the sense that it 
could be used for test case prioritizing, adaptive maintenance 
activities, etc. Finally, we note that other claims that have al-
ready been stated in the manuscript that require further valida-
tion constitute interesting future work, i.e.: (a) the increase in 
the assessing power of MCPM when a larger portion of soft-
ware history is considered as a training set for the method; (b) 
the usefulness of the proposed metric in practice and its adop-
tion by practitioners; and (c) the validity of the MCPM metric 
in other levels of granularity. 

VII. THREATS TO VALIDITY 
In this section we present the threats to the validity of our 

case study. Threats to construct validity [15] concern how 
metrics and change proneness are quantified, including both 
the rationale of the calculation and tool support. Concerning 
the rationale, we note that their definition is clear and well-
documented (see Section III), whereas the used tools have 
been thoroughly tested, before deployment, in a large number 
of open source projects. Nevertheless, assessing the internal 
probability of a module to undergo changes on the basis of 
past changes has limitations as it cannot capture all potential 
reasons for future changes. Moreover, the probability of 
change propagation through static dependencies does not cap-
ture other, conceptually related, dependencies between mod-
ules. Finally, two additional threats to construct validity stem 
from the calculation of PCPC. In particular: (a) by calculating 
PCPC from all commits, without discriminating those occur-
ring due to ripple effects, raises an issue, since the external 
probabilities to change are double counted in the model. How-
ever, since the current version of MCPM is validated as accu-
rate enough, we preferred not to make its calculation even 
more complex, in the sense that such a discrimination would 
require manual inspection of all commits; (b) the evolution of 
a project might not be stable across all releases. For example, 
it is expected that in early stages of development, the changes 
are more massive, and become more focused as the project 
matures. Therefore, the PCPC changes significantly into these 
two stages. 

The reliability of the present study concerns the replicabil-
ity of the collected data and the performed analysis. To ensure 
the reliability [15] of this study, we: (a) thoroughly document-
ed the study design in this work (see Section 4), to make the 
study replicable, and (b) all steps of data collection and data 
analysis have been performed by two researchers in order to 
prevent the introduction of bias. Additionally, the data analy-
sis part is based solely upon statistical analysis (quantitative 
study), a fact that guarantees the elimination of any researcher 
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bias in terms of results interpretation. The low number of sub-
jects (five OSS projects) is a threat to external validity [15], in 
the sense that results on these projects cannot be generalized 
to the complete OSS population. However, since the units of 
analysis for this study are packages and not projects, we be-
lieve that this threat is partially mitigated. Second, we investi-
gated projects only written in Java due to the corresponding 
tool limitations. Therefore, the results cannot be generalized to 
other languages, e.g., C++. Moreover, we note that our results 
are not applicable for modules of non-object-oriented systems, 
since our definition of module applies only in this program-
ming paradigm. Finally, our metric is not applicable for pro-
jects that are not hosted in version control management sys-
tems, since the calculation of PCPC requires access to the 
complete development history of the project. 

VIII. CONCLUSIONS  
In this study, we presented and validated a new method 

that calculates the Module Change Proneness Metric 
(MCPM), which can be used for assessing the change prone-
ness of software modules. The method takes inputs from two 
sources: (a) module dependencies, which are used to calculate 
the portion of the accessible interface of a module that is used 
by other modules, and (b) module change history, which is 
used as a proxy of how frequently maintenance actions are 
performed (e.g., modify requirements, fix bugs, etc.). After 
quantifying these two parameters (for all modules and for all 
their dependencies), MCPM can be calculated at the architec-
ture level, by employing simple probability theory. In this 
work MCPM has been empirically validated against three oth-
er change proneness assessors, based on the criteria defined in 
the 1061-1998 IEEE Standard for a Software Quality Metrics 
[1]. The conducted case study was embedded, and was execut-
ed on five open source software projects, which in total of-
fered us more than 160 units of analysis (i.e., software pack-
ages).  

The results of the validation suggested that MCPM excels 
as an assessor of module change proneness compared to other 
coupling package metrics. In particular, the results implied 
that both the historical and the structural information are need-
ed for an accurate assessment in the sense that the combined 
perspective provided by MCPM has been evaluated as the 
optimal assessor of change proneness, with respect to all vali-
dation criteria. Based on these results, implications for re-
searchers and practitioners have been provided. More specifi-
cally, researchers are encouraged to tailor the proposed metric 
to fit the requirements level, whereas practitioners are encour-
aged to introduce the proposed metric in the quality dash-
boards or quality gates, in order to improve the maintainability 
of their source code and accurately perform test case prioriti-
zation. 
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