
Assessing Change Proneness at the Architecture
Level: An Empirical Validation

Elvira-Maria Arvanitou1, Apostolos Ampatzoglou1, Konstantinos Tzouvalidis2, Alexander Chatzigeorgiou3,
Paris Avgeriou1, Ignatios Deligiannis2

1 Department of Computer Science, University of Groningen, Netherlands
2 Department of Computer Science, Technological Education Institute of Thessaloniki, Greece

3 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
e.m.arvanitou@rug.nl, a.ampatzoglou@rug.nl, kostastzouvalidis@gmail.com, achat@uom.gr, paris@cs.rug.nl, ignatios@it.teithe.gr

Abstract—Change proneness is a characteristic of software arti-
facts that represents their probability to change in future.
Change proneness can be assessed at different levels of granulari-
ty, ranging from classes to modules. Although change proneness
can be successfully assessed at the source code level (i.e., methods
and classes), it remains rather unexplored for architectures. Ad-
ditionally, the methods that have been introduced at the source
code level are not directly transferrable to the architecture level.
In this paper, we propose and empirically validate a method for
assessing the change proneness of architectural modules. As-
sessing change proneness at the level of architectural modules
requires information from two sources: (a) the history of changes
in the module, as a proxy of how frequently the module itself
undergoes changes; and (b) the dependencies with other modules
that affect the probability of a change being propagated from one
module to the other. To validate the proposed approach, we per-
formed a case study on five open-source projects. Specifically, we
compared the accuracy of the proposed approach to the use of
software package metrics as assessors of modules change prone-
ness, based on the 1061-1998 IEEE Standard. The results suggest
that compared to examined metrics, the proposed method is a
better assessor of change proneness. Therefore, we believe that
the method and accompanying tool can effectively aid architects
during software maintenance and evolution.

Keywords—Architectural metrics; Change proneness; Empirical

I. INTRODUCTION
Change proneness is defined as the susceptibility of an ar-

tifact to change in an upcoming versions of a system [14], and
is a cornerstone of change impact analysis [10]. Change
proneness can be defined, quantified, and assessed on artifacts
from different development phases, e.g., at the implementation
level for assessing the urgency to eliminate the existence of a
code smell [7], or at the architecture level for exploring the
ripple effects along maintenance [2]. An application of change
proneness at architecture level1, is its use as a proxy of interest
probability for architectural technical debt [19]. Specifically, it
is claimed that the repayment of technical debt for architectur-
al modules should be prioritized considering their susceptibil-
ity to change. In other words, inefficiencies identified in mod-

1In the rest of the paper, the term ‘architecture level’ refers to the level of

architectural modules. To scope our study further, as architectural modules,
we consider source code packages, which are collections of classes.

ules, do not pose a serious risk regarding projects’ sustainabil-
ity, when these modules are not frequently maintained / modi-
fied [19]. Moreover, identifying modules that are change
prone can steer test planning, by focusing on parts of the ar-
chitecture that are more likely to undergo changes due to
maintenance.

In the literature, one can identify several approaches for
assessing class change proneness (see Section II), but no ap-
proach at the architecture level and specifically on the level of
architectural modules. According to a recent mapping study on
design-time quality attributes, change proneness (and its relat-
ed quality attribute, namely instability) has been assessed by
eight studies at the implementation level (e.g., [6]), six at the
detailed-design level (e.g. [18]), but none at the architecture
level [4]. Despite the existence of many methods on assessing
the change proneness of artifacts at the implementation and
design level, these methods are not directly transferable to the
architecture level. Such a transfer would require, either: (a)
the aggregation of the class level measurements to module
level, using some known function (e.g., average, maximum,
etc.), or (b) the re-introduction of the method’s constructs to
the architecture level. The option of using aggregation func-
tions is not considered optimal, because it could potentially
lead to inaccurate results. For example (see Fig. 1), consider
the assessment of a two-package relationship (A�B) where
each one contains five classes (A1-A5and B1-B5, respectively)
and the packages communicate only through one interface
(e.g., assume that A1calls methods from B1).

Fig. 1. Aggregation of metrics to the architecture level

As expected, classes belonging to the same package collabo-
rate to serve their common purpose (high intra-module cohe-
sion), therefore they are coupled to each other (e.g. each class

2017 24th Asia-Pacific Software Engineering Conference Workshops

978-1-5386-2649-8/17 $31.00 © 2017 IEEE

DOI 10.1109/APSECW.2017.21

94

2017 24th Asia-Pacific Software Engineering Conference Workshops

978-1-5386-2649-8/17 $31.00 © 2017 IEEE

DOI 10.1109/APSECW.2017.21

98

Authorized licensed use limited to: University of Macedonia. Downloaded on February 15,2022 at 11:49:40 UTC from IEEE Xplore. Restrictions apply.

communicates with two others). The use of average would
lead to an aggregated efferent coupling (Ce) [13] at the pack-
age level of 2.2 (A1: 3, A2-A5: 2), and a sum coupling that
equals 11. However, this metric is inaccurate at the module
level since the only inter-module dependency that exists is
between A1and B1. Thus, the option to reshape a method to fit
the architecture level is expected to yield more accurate re-
sults. However, this approach essentially leads to a new meth-
od that needs to be evaluated from scratch, so as to validate its
fitness in the context of architecture.

In this paper, with the goal to provide a change proneness
assessment method for architectural modules, we proceed with
the option to tailor the constructs of a method assessing
change proneness at the design level (i.e., [3]) at the level of
architecture. Based on the original method, to calculate the
change proneness of an artifact, two parameters need to be
quantified [17]: (a) the history of changes of the artifact,
which can be captured e.g., through the frequency of changes
along evolution; and (b) the structural characteristics of the
software, such as coupling [3],[5]. To this end, we propose
how these two parameters can be quantified (or at least as-
sessed) by considering architectural modules (i.e., packag-
es1—a collection of classes).As an outcome, the updated
method calculates a metric, namely Module Change Proneness
Measure (MCPM). Additionally, for the reasons explained
before, we empirically validate the accuracy of the derived
model, by comparing its validity with existing architectural
coupling metrics. The evaluation is performed on five large-
scale Open Source Software (OSS) projects that provide us
with 160 modules as units of analysis. The rationale and the
study setup for the proposed method is a replication of the
evaluation method proposed in the original study [3]. The
evaluation is performed empirically, based on the guidelines
of the 1069-1998: IEEE Standard on Software Measurement.

The rest of the paper is organized as follows: In Section II
we discuss related work and background information on met-
ric validation guidelines, whereas in Section III we present the
proposed method for quantifying module change proneness.
Section IV presents the design of the case study, whereas its
results are presented in Section V. In Section VI we discuss
the main findings of validation. Finally, Sections VII and VIII
present threats to validity and conclude the paper.

II. BACKGROUND INFORMATION
In this section we discuss research efforts related to change

proneness assessment at minimum on design level (see Sec-
tion II.A) and metric validation criteria as defined by the
1069-1998: IEEE Standard on Software Measurement (see
Section II.B)

A. Related Work
In the early ‘80s Yau and Collofello suggested the first

measures for design instability (i.e., a term that is conceptually
relevant to change proneness). Both measures were consider-
ing the probability of an actual change to occur, the complexi-
ty of the changed module, the scope of the used variables, and
the relationships between modules [18]. However, the specific
studies (they are among the first ones that discuss instability as
a quality attribute) are kept at a rather abstract level, without

proposing specific metrics or tools for quantifying them. In a
more recent study, Black proposed an approach for instantiat-
ing the theoretical approach of Yau and Collofello, by calcu-
lating a model for assessing module change proneness. The
approach calculates complexity, coupling, and control flow
metrics, and their combination provides an estimate of change
proneness [6]. The difference of the work of Black compared
to our study is that Black considers single file as modules,
which is at a lower level of granularity than the package level.

 Additionally, many researchers have assessed change
propagation at the class level. For instance, Han et al. pro-
posed a metric that can be used for assessing change prone-
ness of classes, based on studying the behavioral dependencies
of classes [9]. Similarly, Lu et al. conducted a meta-analysis to
investigate the ability of object-oriented metrics to evaluate
change proneness [11]. The results suggested that size metrics
are the optimum assessors of change proneness, followed by
cohesion and coupling metrics [11].Finally, Schwanke et al.
dealt only on bug-related change frequency (i.e., fault prone-
ness), and tried to identify assessors for it [16]. The results of
this study proposed that fan-out (i.e., the number of other arti-
facts which a module depends on) is a good assessor of change
proneness [16], further highlighting the appropriateness of
coupling metrics as assessors of modules’ change proneness.

B. Metric Validation Criteria
For comparing the validity of MCPM to existing coupling

metrics, we will use the criteria described in the 1061 IEEE
Standard for Software Quality Metrics [1]. In this standard, six
metric validation criteria are suggested, accompanied by the
statistical test that shall be used for evaluating every criterion:

• Predictability assesses the accuracy with which the metric
under study applied at a time point t1 is able to predict the
levels of the quality characteristic at a time point t2. The
criterion is quantified through the standard estimation error
for a regression model [1].

• Discriminative Power assesses if the metric under study is
capable of discriminating between high-quality and low-
quality components. Discriminative power can be quanti-
fied through a contingency table [1]. However, this type of
quantification was not applicable for coupling metrics, be-
cause they cannot be recoded as categorical variables,
without setting arbitrary thresholds. Therefore, we use the
Kruskall-Wallis test [8].

• Correlation assesses the relationship between a quality
characteristic and the metric under study to confirm that
the use of the metric can substitute the characteristic. The
criterion is quantified by using a correlation coefficient [1].

• Consistency assesses whether there is consistency between
the ranks of the quality characteristic and the ranks of the
metric under study. Consistency determines if a metric can
accurately rank artifacts in terms of quality. The criterion
is quantified by the coefficient of rank correlation [1].

• Tracking assesses if values of the metric under study can
follow changes in the levels of the quality characteristic.
Tracking is quantified by using the coefficient of rank cor-
relation for a set of project versions [1].

9599

Authorized licensed use limited to: University of Macedonia. Downloaded on February 15,2022 at 11:49:40 UTC from IEEE Xplore. Restrictions apply.

• Reliability assesses if the studied metric can fulfill all the
aforementioned criteria, in a sufficient number of projects.
Reliability offers evidence that a metric can perform its in-
tended function consistently. Reliability can be assessed by
replicating the previously discussed tests (for each of the
aforementioned criteria) to various software systems [1].

III. PROPOSED METHOD
The probability that a module (in our case a package, i.e. a

set of classes) will change in the future is affected not only by
the likelihood of modifying the module itself, but also by pos-
sible changes in other modules that might propagate to it.
Thus, the calculation of change proneness is based on two
main factors: the internal probability to change (i.e., the
probability of a module to change due to changes in require-
ments, bug fixing, etc.) and the external probability to
change, which corresponds to the probability of a module to
change due to ripple effects (i.e., changes propagating from
other modules). To calculate the external probability to
change, the various dependencies between modules need to be
considered: if module A has a dependency to module B, the
external probability of A to change due to B is obtained as:

P(A:externalB) = P(A|B)•P(B)

P(A|B) is the propagation factor between module B and A
(i.e., the probability that a change made in B is emitted to A).
P(B) refers to the internal probability of changing module B.

To illustrate our method, let’s consider the example of Fig. 2,
depicting four packages and some of the contained classes as
well as the dependencies among packages, which in turn are
due to dependencies between the contained classes.

Fig. 2. Example System for MCPM Demonstration

The calculation of change proneness for module A (see Fig. 2)
should take into account the:

• Internal probability to change of A—P(A). This probabil-
ity refers to the likelihood of changing any of the classes
contained in package A for the resolution of bugs or the in-
troduction of a novel feature.

• External probability to change due to ripple effects from
package B—P(A:externalB).The value corresponds to
the probability of A to change because of its dependency to

B. It depends on the internal probability of B to change (as
a trigger to the ripple effect) and the possibility of changes
to propagate through the B�A dependency (as a proxy of
the probability that the change be emitted).

• External probability to change due to ripple effects from
package C—P(A:externalC).

• External probability to change due to ripple effects from
package D—P(A:externalD).

Since a module might be involved in several dependencies and
because even one change in the dependent modules will be a
reason for changing that module, the module change prone-
ness measure (MCPM) is calculated as the joint probability of
all events that can cause a change to a module. In this exam-
ple, module A might change due to the following events: (a)
change in A itself, (b) a ripple effect from B, (c) a ripple effect
from C, or (d) a ripple effect from D, as follows:

MCPM(A) = Joint Probability{P(A), P(A:externalB),
P(A:externalC), P(A:externalD)}

The accuracy in assessing MCPM depends on the precision
of the estimates of the internal probability of change for each
module and the propagation factor for each dependency. Re-
garding the internal probability of change we use the per-
centage of commits in which a module has changed [20]. We
study all commits between two successive versions of a sys-
tem and count in how many of those, at least one class of the
module has changed. This percentage is calculated for all past
pairs of versions, and the obtained average is used as the in-
ternal probability of change. Concerning the propagation fac-
tor of changes among dependent modules we tailored the
Ripple Effect Measure (REM) [3], which quantifies the proba-
bility of a change occurring in class B to be propagated to a
dependent class A. REM essentially quantifies the percentage
of the public interface of a class that is being accessed by a de-
pendent class. The calculation of REM is based on dependen-
cy analysis. Such change propagations [3], are the result of
certain types of changes in one class (e.g., a change in the
method signature—i.e., method name, types of parameters and
return type—that is invoked inside another method) that po-
tentially emit changes to other classes. To fit the architecture
level, REM has been changed to deal with modules instead of
classes. At the module level we consider all class dependen-
cies that reach across modules. For example, to calculate the
REM from package B to package A in Fig. 2, we consider two
dependencies, namely A1 to B1 and A4 to B2. The aggregation
of class to module dependencies yielding the Ripple Effect
Measure between packages B and A, REM(B→A), is performed
as follows, by tailoring the original definition of REM:

�������� 	
 ������� � ������� � �����������
������� � �������

�������������������

� !

NDMC: number of direct method calls
NOM: number of methods
NOA: number of attributes
NPrA: number of protected attributes (only for inheritance)
NOP: number of polymorphic methods (only for inheritance)

96100

Authorized licensed use limited to: University of Macedonia. Downloaded on February 15,2022 at 11:49:40 UTC from IEEE Xplore. Restrictions apply.

Details of REM calculation are provided in the paper, in which
we defined and validated it [3].The rationale for building the
REM calculation formula can be summarized as follows: The
ratio of the two aforementioned counts is an estimate of the
probability that a random change in the public interface of
source class will occur in a member that will emit this change
to the dependent class. In other words, as the number of the
members of the source class that emit changes to another de-
pendent class, approaches the total number of members that
can change in the source class, it becomes more probable for
changes to propagate from the source class to the dependent
class. Based on REM definition, the formula for calculating
external probability, presented before, is updated as follows:

P(A:externalB) = REM(B→A)•P(B)

As any other probability the range of MCPM is [0, 1] (i.e., 0%
to 100%). Although, we are not able to provide a threshold
that discriminates highly from low change prone modules, the
metric can prove useful for comparison purposes.

IV. CASE STUDY DESIGN
To investigate the validity of MCPM as an assessor of

change proneness, we performed a case study on five OSS
projects, and compare MCPM to three package-level coupling
metrics. Coupling metrics have been considered in this study
for two reasons: (a) they represent the existence / strength of
dependencies among modules, and are thus structural metrics
that can be considered as a proxy of external probability of
change; and (b) they are reported in related studies (e.g. [16]
and [18]) as fair assessors of change proneness. By consider-
ing that this study focuses on the architecture level, we needed
to identify metrics calculated at module or package level [13]:

• Afferent Coupling (Ca)—the number of classes in other
packages that depend upon classes within the package. An
indicator of packages responsibility. Afferent couplings
signal inward dependencies [13];

• Efferent Coupling (Ce) —the number of classes in other
packages that at least one class in a package depends upon.
An indicator of packages dependence on external modules.
Efferent couplings signal outward dependencies that con-
sist reasons for change [13]; and

• Instability (I) —the ratio of efferent coupling (Ce) to total
coupling (Ce + Ca) such that I = Ce / (Ce + Ca). This met-
ric is an indicator of packages’ resilience to change, and its
range is [0, 1]: I=0 indicating a completely stable package
and I=1 indicating an unstable package [13].

The study has been designed and reported according to the
guidelines of Runeson et al. [15]. In this section, we present:
(a) the goal of the case study and the derived research ques-
tions, (b) the description of cases and units of analysis, (c) the
data collection, and (d) the process for data analysis.

A. Objectives and Research Questions.
This study aims to analyze MCPM and package metrics for
the purpose of evaluation with respect to their validity to as-
sess module change proneness, from the point of view of ar-
chitects in the context of software maintenance and evolution.
Based this goal, we have set two research questions:

RQ1: How does MCPM compare to package metrics with
respect to their validity as assessors of change prone-
ness based on the IEEE Standard on Software Meas-
urement (i.e., predictability, discriminative power, cor-
relation, consistency, and tracking)?

RQ2: How does MCPM compare to package metrics with
respect to reliability?

RQ1 aims to investigate the validity of the proposed measure,
in comparison to three existing metrics, with respect to the
first five validity criteria (i.e. correlation, consistency, track-
ing, predictability and discriminative power). For this research
question we employ a single dataset comprising all examined
projects. RQ2 aims to investigate the validity in terms of relia-
bility. Reliability is examined separately since, according to its
definition, each of the other five criteria should be tested on
different projects. For RQ2we consider each project as a dif-
ferent dataset and then results are cross-checked to assess met-
rics’ reliability.

B. Case Selection Units of Analysis and Selection
This study is an embedded multiple-case study, i.e., it studies
multiple cases and each case is comprised of many units of
analysis. Specifically, the cases are open source projects,
whereas the units of analysis are their packages (i.e., the re-
porting is performed at the project level). The results are ag-
gregated to the complete dataset by using the percentage of
projects in which the results are statistically significant. As
subjects we selected to use the last five versions of five open
source software (OSS) projects. A short description of the
goals of these projects is provided in Table I, along with some
demographics.

TABLE I. PROJECT DEMOGRAPHICS

Project
Training

Transitions
Assessment
Transitions Description

wro4j
(32 packages) 1.7.0 �1.7.8 1.7.8 � 1.8.0

a tool for
optimization of web
resources

Guava
(17 packages) 11.0 �19.0 19.0 � 21.0 a set of libraries for

new collection types

commons-lang
(12 packages) 3.0.1 � 3.3.2 3.3.2 � 3.5

a host of helper
utilities for the java
language API

joda-time
(7 packages) 2.8.2 �2.9.7 2.9.7 � 2.9.9

a replacement for
the Java date and
time classes

Wicket
(72 packages) 7.0.0 � 8.0.0.2 8.0.0.2 � 8.0.0.4 a web application

framework

The projects have been selected based on: (a) their populari-
ty—i.e., highly reused libraries and frameworks (according to
Maven Repository), (b) their programming language—the
used tools can only parse Java code, (c) their non-trivial
size—i.e., more than 500 classes (although their number of
packages differs), and (d) their consistency in releasing new
versions in rather stable timeframes—this is important since
the training versions should have a similar number of commits
as the assessment versions. Thus, our study was performed on
about 160 Java packages (on average: ~30 per project).

97101

Authorized licensed use limited to: University of Macedonia. Downloaded on February 15,2022 at 11:49:40 UTC from IEEE Xplore. Restrictions apply.

C. Data Collection& Analysis
For each unit of analysis (i.e., package), we recorded eight

variables: (a) Demographics—project, version, package name;
(b) Assessors (MCPM, Ca, Ce, and I)—these variables are
going to be used as the independent variables, and are calcu-
lated in the last training version; and (c) Actual changes—we
calculate the percentage of commits in which the correspond-
ing package has changed (PCPC) in the transition between the
last two versions of a system (i.e., those that we want to as-
sess—see last column of Table I), as the variable that captures
the actual changes. PCPC is going to be used as the dependent
variable in all tests, representing the actual change proneness.
The aforementioned metrics have been calculated with two
tools. PCPC is calculated by a tool that uses the GitHub API to
count in how many commits each package has been modi-
fied2.All assessors have been calculated by modifying the tool
of Tsantalis et al. [17].

The variables are analyzed against the criteria of 1061
IEEE Standard, as imposed by the standard per se. More de-
tails on the assessment of each criterion are provide in Section
II, whereas an overview is presented in Table II.

TABLE II. MEASURE VALIDATION ANALYSIS

Criterion Test Variables Target
Version

Predictability Linear Regression
Independent: Assessors
Dependent: Actual Changes

Last

Discriminative
Power

Kruskal-Wallis
Test

Testing: Assessors,
Grouping: Actual Changes

Last

Correlation Pearson Correl. Independent:
Assessors
Dependent:
Actual Changes

Last

Consistency Spearman Correl. Last

Tracking Spearman Correl. All

Reliability All the aforementioned tests All

V. RESULTS
In this section, we present the results of the case study.

Section V.A presents the results on comparing MCPM to other
candidate change proneness assessors, with respect to five
criteria (correlation, tracking, consistency, predictability and
discriminative power), and Section V.B concerns reliability.

A. Correlation, Consistency, Tracking, Predictability and
Discriminative Power (RQ1)
In Table III we present the results of the univariate Linear

Regressions that have been performed to validate the predic-
tive power of each assessor; and in Table IV the results on the
Discriminative Power of the assessors. The cells of Table III
represent the standard error of the regression model and the
cells of Table IV represent the level of significance in the dif-
ferences of metric scores. The rest of the notations remain
unchanged. Table III suggests that MCPM and Ce are the best
predictors of package change proneness. In addition, the re-
sults of Table IV suggest that MCPM and Ce are the optimal
assessors for discriminating groups of packages, based on their
change proneness, i.e., classify them into groups with similar
values of change proneness.

2http://www.cs.rug.nl/search/uploads/Resources/

TABLE III. PREDICTIVE POWER

Project MCPM Ca Ce I

wro4j .030 .031 .030 .032

Guava .104 .110 .115 .119

commons-lang .067 .112 .075 .125

joda-time .319 .324 .320 .320

Wicket .012 .012 .008 .013

% sig. 60% 40% 40% 0%

TABLE IV. DISCRIMINATIVE POWER

Project MCPM Ca Ce I

wro4j .008 .587 .049 .613

Guava .059 .277 .139 .835

commons-lang .999 .727 .999 .889

joda-time .381 .190 .571 .381

wicket .000 .734 .000 .862

% sig. 40% 0% 40% 0%

In Tables V - VII, we present the results of the first three
criteria: (a) correlation, (b) consistency, and (c) tracking. Each
row of the tables represents one project, whereas each column
denotes the correlation coefficient for each metric (i.e., Pear-
son for correlation and Spearman for consistency). Regarding
tracking (see Table VII) the cells of each column present the
mean Spearman correlation coefficient obtained by assessing
the change proneness for all versions. The italic fonts denote
statistically significant correlations, whereas bold fonts the
assessor that is the most highly correlated with actual change
proneness. Finally, the last row of each table corresponds to
the percentage of projects, in which the specific assessor is
significantly correlated to the actual change proneness.

TABLE V. CORRELATION ANALYSIS

Project MCPM Ca Ce I

wro4j .348 .288 .346 .102

Guava .487 .407 .272 .109

commons-lang .805 .156 .754 -.166

joda-time .205 .090 -.187 -.409

Wicket .476 .412 .791 -.016

% sig. 80% 40% 40% 0%

Table V suggests that MCPM is in 60% of the cases
strongly correlated (see interpretation of correlation coeffi-
cients in [12]—corr. coefficient > 0.4) to actual package
change proneness. At the individual project level, MCPM is
very strongly correlated to change proneness for 20% of the
projects, strongly correlated for 40%, and moderately correlat-
ed for 40%; whereas it is the most valid assessor in terms of
correlation for 80% of the projects. We note that MCPM is
significantly correlated with change proneness in all OSS pro-
jects that we have examined, whereas Ca and Ce only in 40%.
Additionally, MCPM is the best change proneness assessor in

98102

Authorized licensed use limited to: University of Macedonia. Downloaded on February 15,2022 at 11:49:40 UTC from IEEE Xplore. Restrictions apply.

all three criteria—see Tables V to VII. However, we observe
that the results on tracking (Table VII) have lower values,
denoting decreased validity when considering the complete
project lifetime.

TABLE VI. CONSISTENCY ANALYSIS

Project MCPM Ca Ce I

wro4j .398 .052 .379 .110

Guava .437 .484 .409 .197

commons-lang .306 .110 .242 .013

joda-time .378 .321 -.161 -.400

Wicket .419 -.069 .623 .059

% sig. 60% 20% 40% 0%

TABLE VII. TRACKING ANALYSIS

Project MCPM Ca Ce I

wro4j .390 .050 .375 .105

Guava .400 .450 .301 .150

commons-lang .301 .106 .240 .010

joda-time .370 .317 -.155 -.395

Wicket .410 -.064 .618 .052

% sig. 40% 20% 40% 0%

B. Reliability (RQ2)
Regarding RQ2, we executed all the aforementioned tests

separately for each project. For a metric to be considered a
reliable assessor of change proneness, it should be consistently
ranked among the top assessors for each criterion. To visualize
this information, in Figures 3a - 3e we present a stacked bar
chart for each validity criterion. In each chart, every bar corre-
sponds to one change proneness assessor, whereas each stack
represents the ranking of the assessor among the evaluated
ones for each project.

(a) Predictability Analysis

(b) Discriminative Power Analysis

(c) Correlation Analysis

(d) Consistency Analysis

(e) Tracking Analysis

Fig.3.Reliability Assessment

From Figure 3c, we can observe that MCPM is the top-1 as-
sessor (blue) of change proneness, with respect to correlation
in three projects and the top-2 assessor (orange), for one other
project. For some charts the count of 1st (blue), 2nd (orange)
and 3rd (grey) positions does not sum up to five, since in case
of equal scores, metrics are assigned the highest rank.

TABLE VIII. RELIABILITY ANALYSIS

Criterion MCPM Ca Ce I

Corelation 14 7 9 0

Consistency 13 6 9 2

Tracking 13 6 9 2

Predictive Power 14 6 11 4

Discriminative Power 12 9 8 4

Total 66 34 46 12

In Table VIII we present a synthesized view of the aforemen-
tioned results. Specifically, we use a point system to evaluate
the consistency with which each assessor is highly ranked
among others in all criteria. In particular, for every first posi-
tion we reward the assessor with three points, for every second
position with two points, and for every third position with one
point. In Table VIII each row represents a criterion, whereas
each column an assessor of change proneness. The cells repre-
sent the points that each assessor scored for each criterion. The

99103

Authorized licensed use limited to: University of Macedonia. Downloaded on February 15,2022 at 11:49:40 UTC from IEEE Xplore. Restrictions apply.

last row, presents a sum of all criteria. The results presented in
both Table VIII and Figure 3, suggest that MCPM is the most
reliable assessor of package change proneness, followed by
Ce.

VI. DISCUSSION

A. Interpretation of the Results
The results of this study suggest that at the architecture

level, MCPM is a better assessor of change proneness, com-
pared to all other explored metrics, followed by Ce. It is ex-
pected that MCPM outperforms other metrics, mostly because
it combines the two aspects of change proneness (i.e., proba-
bility of the package itself to change due to changes in re-
quirements, bug fixes, etc. and the probability of a package to
change due to the ripple effects), whereas all other coupling
metrics consider only the second aspect (i.e., structural de-
pendencies). In addition, all other package metrics are just
counting dependencies among packages and do not quantify
the strength of the relationship. The proposed measure consid-
ers the percentage of the public interface of a module that is
being accessed by another module and therefore accurately
captures the probability of change propagation between them.

Another interesting observation is that the validity of all
metrics in terms of tracking is lower compared to consistency.
This outcome is expected since the training set for assigning
the value of the internal package probability is getting smaller,
while we explore earlier project versions, and therefore the
tracking ability becomes less accurate. This outcome implies
that using a project history longer than five versions, might
increase even more the validity of MCPM. However, this
statement needs to be empirically evaluated by a follow-up
study. Furthermore, by comparing the package metrics of this
study, we can observe that efferent coupling is a better asses-
sor of change proneness than afferent coupling and instability.
This finding is reasonable since outward dependencies (i.e.,
packages in which a package relies upon) are more important
than inward ones when assessing the susceptibility of modules
to change. Additionally, this result is in accordance to related
work, at the class level, which suggests that the fan-out metric
is a more important parameter than fan-in regarding change
proneness [16].

B. Implications to Researchers and Practitioners
Based on the aforementioned results and discussions, we

can provide implications for researchers and practitioners. On
the one hand, we encourage practitioners, and especially archi-
tects, to use MCPM in their quality monitoring processes, in
the sense that MCPM is a better assessor of the probability of
a module to change, compared to other metrics (although a
more thorough validation with practitioners is still required).
We expect that tool support automating the calculation process
will ease its adoption. Based on the expected relations of
change proneness to more high-level quality characteristics
(e.g., increased defect-proneness, more technical debt interest,
etc.), it can be used as an assessor of future quality indicators.
In particular, test case prioritization can highly benefit from
observing the value of MCPM for system modules that are
changing. For example, additional modules that need to be
tested can be identified through the dependency analysis pro-

vided by the tool. The tool aids in test prioritization in the
sense that it designates the probability of the dependent mod-
ule to change due to ripple effects. We believe that the tailor-
ing of the method to the architecture level consist it even more
beneficial (compared to the class level), since it increases the
scalability of change impact analysis to larger systems.

On the other hand, we suggest that researchers should tai-
lor the MCPM to the level of requirements, i.e., assess the
probability of a requirement to change in the future and com-
pile a list of other requirements that might be affected. We
believe that such a transformation would be of great interest
for the software engineering community, in the sense that it
could be used for test case prioritizing, adaptive maintenance
activities, etc. Finally, we note that other claims that have al-
ready been stated in the manuscript that require further valida-
tion constitute interesting future work, i.e.: (a) the increase in
the assessing power of MCPM when a larger portion of soft-
ware history is considered as a training set for the method; (b)
the usefulness of the proposed metric in practice and its adop-
tion by practitioners; and (c) the validity of the MCPM metric
in other levels of granularity.

VII. THREATS TO VALIDITY
In this section we present the threats to the validity of our

case study. Threats to construct validity [15] concern how
metrics and change proneness are quantified, including both
the rationale of the calculation and tool support. Concerning
the rationale, we note that their definition is clear and well-
documented (see Section III), whereas the used tools have
been thoroughly tested, before deployment, in a large number
of open source projects. Nevertheless, assessing the internal
probability of a module to undergo changes on the basis of
past changes has limitations as it cannot capture all potential
reasons for future changes. Moreover, the probability of
change propagation through static dependencies does not cap-
ture other, conceptually related, dependencies between mod-
ules. Finally, two additional threats to construct validity stem
from the calculation of PCPC. In particular: (a) by calculating
PCPC from all commits, without discriminating those occur-
ring due to ripple effects, raises an issue, since the external
probabilities to change are double counted in the model. How-
ever, since the current version of MCPM is validated as accu-
rate enough, we preferred not to make its calculation even
more complex, in the sense that such a discrimination would
require manual inspection of all commits; (b) the evolution of
a project might not be stable across all releases. For example,
it is expected that in early stages of development, the changes
are more massive, and become more focused as the project
matures. Therefore, the PCPC changes significantly into these
two stages.

The reliability of the present study concerns the replicabil-
ity of the collected data and the performed analysis. To ensure
the reliability [15] of this study, we: (a) thoroughly document-
ed the study design in this work (see Section 4), to make the
study replicable, and (b) all steps of data collection and data
analysis have been performed by two researchers in order to
prevent the introduction of bias. Additionally, the data analy-
sis part is based solely upon statistical analysis (quantitative
study), a fact that guarantees the elimination of any researcher

100104

Authorized licensed use limited to: University of Macedonia. Downloaded on February 15,2022 at 11:49:40 UTC from IEEE Xplore. Restrictions apply.

bias in terms of results interpretation. The low number of sub-
jects (five OSS projects) is a threat to external validity [15], in
the sense that results on these projects cannot be generalized
to the complete OSS population. However, since the units of
analysis for this study are packages and not projects, we be-
lieve that this threat is partially mitigated. Second, we investi-
gated projects only written in Java due to the corresponding
tool limitations. Therefore, the results cannot be generalized to
other languages, e.g., C++. Moreover, we note that our results
are not applicable for modules of non-object-oriented systems,
since our definition of module applies only in this program-
ming paradigm. Finally, our metric is not applicable for pro-
jects that are not hosted in version control management sys-
tems, since the calculation of PCPC requires access to the
complete development history of the project.

VIII. CONCLUSIONS
In this study, we presented and validated a new method

that calculates the Module Change Proneness Metric
(MCPM), which can be used for assessing the change prone-
ness of software modules. The method takes inputs from two
sources: (a) module dependencies, which are used to calculate
the portion of the accessible interface of a module that is used
by other modules, and (b) module change history, which is
used as a proxy of how frequently maintenance actions are
performed (e.g., modify requirements, fix bugs, etc.). After
quantifying these two parameters (for all modules and for all
their dependencies), MCPM can be calculated at the architec-
ture level, by employing simple probability theory. In this
work MCPM has been empirically validated against three oth-
er change proneness assessors, based on the criteria defined in
the 1061-1998 IEEE Standard for a Software Quality Metrics
[1]. The conducted case study was embedded, and was execut-
ed on five open source software projects, which in total of-
fered us more than 160 units of analysis (i.e., software pack-
ages).

The results of the validation suggested that MCPM excels
as an assessor of module change proneness compared to other
coupling package metrics. In particular, the results implied
that both the historical and the structural information are need-
ed for an accurate assessment in the sense that the combined
perspective provided by MCPM has been evaluated as the
optimal assessor of change proneness, with respect to all vali-
dation criteria. Based on these results, implications for re-
searchers and practitioners have been provided. More specifi-
cally, researchers are encouraged to tailor the proposed metric
to fit the requirements level, whereas practitioners are encour-
aged to introduce the proposed metric in the quality dash-
boards or quality gates, in order to improve the maintainability
of their source code and accurately perform test case prioriti-
zation.

REFERENCES
[1] 1061-1998: IEEE Standard for a Software Quality Metrics Methodology,

IEEE Standards, IEEE Computer Society, re-affirmed Dec. 2009).
[2] S. Anwar, F. Idris, M. Ramzan, A. A. Shahid and A. Rauf, "Architecture

Based Ripple Effect Analysis: a Software Quality Maintenance

Perspective", 10th International Conference on Information Science and
Applications (ICISA’ 10), IEEE Computer Society, pp. 1-8, Seoul, 2010.

[3] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“Introducing a ripple effect measure: a theoretical and empirical
validation”, 9th International Symposium on Empirical Software
Engineering and Measurement (ESEM ‘15), IEEE Computer Society,
22–23 October 2015, China.

[4] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, M. Galster, and
P. Avgeriou, “A Mapping Study on Design-Time Quality Attributes and
Metrics”, Journal of Systems and Software, Elsevier, 127 (5), pp. 52-77,
May 2017.

[5] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“A Method for Assessing Class Change Proneness”, 21st International
Conference on Evaluation and Assessment in Software Engineering,
ACM, 15-16 June 2017, Sweden.

[6] S. Black, “Deriving an approximation algorithm for automatic
computation of ripple effect measures”, Information and Software
Technology, Elsevier, 50, pp. 723-736, 2008.

[7] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, and P.
Avgeriou, “Assessing Code Smell Interest Probability: A Case Study”,
9th International Workshop on Managing Technical Debt (MTD’ 17),
ACM, 22 May 2017, Germany.

[8] A. Field, “Discovering Statistics using IBM SPSS Statistics”, SAGE
Ltd, 2013.

[9] A. R. Han, S. Jeon, D. Bae, and J. Hong, “Measuring behavioral
dependency for improving change-proneness prediction in UML-based
design models”, Journal of Systems and Software, Elsevier, 83 (2), pp.
222-234, February 2010.

[10] F. M. Haney, “Module connection analysis: A tool for scheduling of
software debugging activities”, AFIPS Fall Joint Computer Conference,
pp. 173-179, 5-7 Dec. 1972, USA.

[11] H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen, “The ability of object-
oriented metrics to predict change-proneness: a meta-analysis”,
Empirical Software Engineering, Springer, 17 (3), pp. 200-242, June
2012.

[12] L. Marg, L. C. Luri, E. O’Curran, and A. Mallett, “Rating Evaluation
Methods through Correlation”, 1st Workshop on Automatic and Manual
Metrics for Operational Translation Evaluation (MTE’14), Reykjavik,
Iceland, 26 May 2014.

[13] R. C. Martin “Agile software development: principles, patterns and
practices”, Prentice Hall, New Jersey. 2003.

[14] P. Rovegard, L. Angelis, and C. Wohlin, “An empirical study on views
of importance of change impact analysis issues”, Transactions on
Software Engineering, IEEE Computer Society, 34 (4), pp. 516–530,
April 2008

[15] P. Runeson, M. Host, A. Rainer and B. Regnell, “Case Study Research
in Software Engineering: Guidelines and Examples”, John Wiley &
Sons, 2012.

[16] R. Schwanke, L. Xiao, and Y. Cai, “Measuring architecture quality by
structure plus history analysis”, 35th International Conference on
Software Engineering (ICSE 2013), ACM/IEEE Computer Society, pp.
891-900, 18-26 May 2013, USA.

[17] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, "Predicting the
Probability of Change in Object-Oriented Systems", Transactions on
Software Engineering, IEEE Computer Society, 31 (7), pp. 601-614,
July 2005.

[18] S. S. Yau and J. S. Collofello, "Design Stability Measures for Software
Maintenance", Transactions on Software Engineering, IEEE Computer
Society, 11 (9), September 1981.

[19] Zazworka, N., Seaman, C., Shull, F.: Prioritizing design debt investment
opportunities. In: 2nd International Workshop on Managing Technical
Debt (MTD’ 11), ACM, (2011)

[20] J. Zhang, S. Sagar, an E. Shihab, “The Evolution of Mobile Apps: An
Exploratory Study”, International Workshop on Software Development
Lifecycle for Mobile (DeMobile’ 13), ACM, pp. 1-8, Saint Petersburg,
Russia, 19 August 2013.

101105

Authorized licensed use limited to: University of Macedonia. Downloaded on February 15,2022 at 11:49:40 UTC from IEEE Xplore. Restrictions apply.

